O Cqauised Sevmd vol 4 423 Cabrige Uhru. Pres (330D
J K;-—:;Camf’* (\ 1o oulnhfj5"§; o 4551) 2

TUTORIAL ARTICLE

Determinacy and indeterminacy

IANNIS XENAKIS
[7 rue Masse, 75009 Paris, France

The Editors are delighted to welcome this contribution from
a venerable pioneer of algorithmic composition who is also
a member of Organised Sound’s Advisory Board, In this
article, edited from notes for a series of lectures delivered in
Poland, and not previously published, Xenakis tackles first
{he questions arising from determinacy and indeterminacy,
repetition and variation, symmetry and structure, and
mutidimensionai musical space. He later describes his
computer drawing interface, UPIC, and ends with a
discussion of some of his statistical compositional methods
employing a variety of probability distributions. Much of
the article is illuminated by insights drawn from a lifetime’s
work in the arts and sciences.

1, INTRODUCTION

The problem encompassed by determinacy and in-
determinacy is a permanent one in music, both for
composition and also for performance. Two perform-
ances of the same work are never exactly the same.
They hover around what we may consider an ideal
mean of performance, dependent upon errors and the
style of the performer. This is understandable.

Determinacy constitutes a very important and
deep question, especially when considercd against a
background of physics and computer science. We

. know that since the time of Copernicus and Kepler
the movements of the planets and other celestial bod-
ies have been geometrically defined. With Newton,
gravitational theory seemed to be so accurate that
repetitions of planetary motion could be foreseen and
predicted until the end of time. This is like saying that
you have a score, you memorise it, and then all you
have to do is play it.

Theories about the movements of the planets,
however, make an abstraction of the influences of
other celestial bodies — even remote galaxies — as a
result of which the predicted movements are not
exactly in conformity with theory. Actually the move-
ments in the far future cannot be foreseen with accu-
racy — the seemingly predictable movements are in
fact unpredictable. The whole field of science dealing
with such phenomena is today known as ‘chaos’, and
the laws which govern the variations of behaviour are
caused by ‘strange attractors’, a term used in contem-
porary physics.

In performing a score or something from memory
we come across surprisingly similar problems. We

never hear the same performance. This fact perhaps
makes the performing of traditional music interest-
ing, because each time the skilled performer brings
with him something unforeseen and interesting aes-
thetically. It is also a matter of interest to sce how
the problem of the unforesecable — of surprise — was
anticipated at the compositional level; how determin-
ism was treated during the writing of a piece and to
what extent it constituted an integral part of the
composition.

In the traditional music of India, for exampie,
there are rhythmic patterns which are very well
known by both performer and audience. Nevertheless
a performer tries to raise the interest of his perform-
ance by unexpected variation of the rhythmic pat-
terns. Here the performer also becomes a kind of
composer since he decides which variation to use.

A composer working in the domain of rhythmic
music faces this problem of expectancy in rhythm.
Through the history of the development of rhythm
there has been a tendency for increasing complexity
based on the degree of unexpectedness of what might
follow any musical event; therefore this is an
approach based upon a non-deterministic way of
thinking.

2. REPETITION AND VARIATION

Let me describe for you, as an example, the treatment
of a given -- beautiful — melodic pattern. Suppose you
have composed it, or it has been created by someone
else — the writer is not important for our consider-
ations, This fragment of music is very dense, but what
will become of it afterwards? You cannot repeat it
every time in the same way, even if you are very fond
of it. So there has to be some change in the repetition.
I suppose this was at the root of the invention of
pattern transposition, from which also stems the
establishment of the chromatic scale.

Therefore the point is identified: the varying man-
ner of repetition of the same thing, i.e. of something
which has been established as a kind of identity. Our
musical pattern is repeated in time but in a different,
unexpected way. I believe this is the meaning of trans-
position. So, for me, the polyphonic concept of music
is born from this kind of fight between expectancy
and non-expectancy.
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A sccondary consideration is, perhaps. the mean-
ing of so-called variations. A kind of identity - a very
powerlul idea - is presented to the listeners and alter-
wards changed: this idea is then repeated. but in a
different way, in order to create an unexpected result.
This kind of surprise represents an important factor
in aesthetics. whether understood through time or
outside of time. This further corroborates my state-
ment that considerations of determinacy and inde-
terminacy have been deeply rooted in music from its
very beginning.

Let us consider this problem in the light of serial
music. Serial music is based on a string of pitches like
a kind of melodic pattern. While the series of pitches
is repeated over and over, by using the laws of poly-
phony the degree of unexpectedness is augmented.
Historically, in order to derive a further layer of com-
plexity — which in this case is something close to sur-
prise — the so-called klangfarbenmelodie  was
introduced. Here the timbre was something that cre-
ated surprise in the repetition.

I do not wish to develop further these historical
facts because they are probably well known to you,
but I want to stress this one important notion of rep-
etition, i.e. the reproduction of some idea, and then
the discrepancy of moving away from that idea — an
antinomy to that identity — by repeating it but in a
different way.

This, 1 think, is the core of the problem of deter-
minism and non-determinism. Is the repetition more
or less faithful to some identity or to some pattern
introduced earlier? The given examples occur in time,
but we can have the same principle in other domains
of music, which are not dependent upon time.

These aspects of music are often referred to as
‘parameters’, but 1 prefer ‘characteristics of sound’.
‘Parameter’ is a mathematical term, which has a very
specific meaning; it has been borrowed from math-
ematics by composers in the wrong way, just as the
term ‘aleatoric’ has been borrowed from physics in
the wrong way. Aleatoric music simply means impro-
vised music. ‘

3. SYMMETRY

As an example of a domain of music which does not
depend on time, consider the distribution of intervals
in an arbitrary scale. We could relate this to sym-
metry, in the domain outside of time. What repetition
is in time, symmetry would be outside of time.

Lamps in a concert hall are usually arranged sym-
metrically, because there is the same distance between
them, the same common measure. Symmetry means
common measure. One can imagine the chromatic
scale like a symmetry in the pitch domain, similar to
the lamps in the concert hall.

Now, with some effort, we can say the same thing
about time, that since we can memorise the time
intervals and compare them, then we can define a
chromatic scale in time, which has the same type of
symmetry as the outside-of-time characteristics.

With this kind of abstract thinking we can see the
correspondence between a pitch and a time instant.
Similar correspondences can be seen between pitch
intervals and time intervals — i.e. durations. We can
also find these correspondences in other character-
istics of sound, for example in intensitics.

One can define levels of intensities: after the inven-
tor of the telephone we call them decibels (or perhaps
phones!). Thanks to the telephone, musicians have a
chromatic scale of intensities.

However, we cannot apply the same notion of
structure to timbre, or sound colour, so we have only
three domains: pitch, time, and intensity. These three
realms have in common a so-called order structure,
which was first identified in the field of experimental
psychology by Jean Piaget, in the analysis of the
growth of the child and the steps or phases of evol-
ution of notions in the child’s mind — and therefore
of our minds as well. Piaget’s books concerning these
probiems are entitled The Child’s Conception of Time
and The Child’s Conception of Space.

We should notice the fact that things which we
believe to be invented by musicians are actually not
invented at all, they are deeply rooted in the struc-
tures of our minds.

4. ORDERED STRUCTURES

Jean Piaget did one particular thing — he put together
the evolution of the brain of a child with the notions
of mathematics. In fact mathematicians discovered
the structures of the mind before the psychologists.
The underlying structures that I have been dis-
cussing — the chromatic scale of pitches, time and
dynamics — are called ordered structures.

The definition of an ordered structure is as follows.
Given three elements of a set, they can be ordered in
just one way by saying that onc of the three is
between the other two. In other words a set of
elements has an ordered structure if you can put them
in a string, placing each between two others and com-
pleting the set by applying this rule.

We can say this about pitches, about dynamics,
instants in time, about sizes of objects, sizes of peo-
ple — but we cannot say this about timbre.

For instance, if we wish to go from the timbre of
a noise to that of a pleasant sopranc voice, there are
many ways, timbrally, in which this can be done.
However, in order to go from a low pitch to a high
one we always traverse the same set of pitches, even
if we do not play them. We can apply this test to a
set in music or elsewhere to sce if it is ordered or not.




Figure 1

This leads us to the following: since we can order
clements of some musical characteristics, we can
assign them to points on a line — a straight line, or a
curved one which does not cross itself. (A straight
line is topologically the same as a curved line which
does not cross itself; see figure 1.) The points on the
line alsc have an ordered structure, because any peint
can be placed in between any other two points. Per-
haps this is why musical notation has developed since
the time of Guido d’Arezzo — because of this com-
munity of structures with the graphic, spatial, straight
line.

As an example, notes on a stave are ordered in two
ways — horizontally (in time) and vertically (in the
pitch domain; see figure 2). Given the notes ‘¢’ and
‘g’, you can place the third, ‘f”, in between them verti-
cally and also horizontally. The stave is a traditional
musical version of a more general, more universal
notation of points on a straight line.

In this way we can imagine pitches, instants in
time, levels of intensity and also other characteristics
from different points of view, like density (the num-
ber of events per time unit) and degree of order, or —
better still — disorder. I do not, however, intend that
only instrumental sounds be considered in this dis-
cussion. We can, for instance, conceive of instan-
taneous sounds without pitches, le. purely
percussive. There are also sounds without a definite
attack time, sounds that might start at a very low
level: we do not know when these happen, but we
suddenly realise the sounds are there! In fact, we
make a kind of strong abstraction when we define
pitches, dynamics, or instants with any degree of pre-
cision, but it is necessary to attempt this in order to
be able to go forward and manipulate more complex
phenomena.

Now I shall return to what was said before about
repetition. Here, the translation of repetition into the
representation of the domains of characteristics of
sound can be treated as the problem of distributing
points on a line, The latter is very general and much
easier to manipulate and to think about. So, a chro-
matic scale can be pictured as points with equal dis-
tance between them (figure 3). It can be formed using
semitones, quartertones, commas, octaves, or indeed

Figure 2
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Figure 3. A chromatic scale as points on a linc.

any equal interval. The same principle can be applied
to time, levels of intensity, density, degree of disorder,
and so on.

So the problem of determinacy and indeterminacy
is the problem of distribution of points on a line in
such a way that a very strong symmetry or repetition
will not occur. It is easy to imagine or design patterns
which are more or less repetitive or absolutely non-
repetitive. The latter can be created by hand or by
other means to ensure that there is no repetition at
all.

‘What means might we use?

5. MULTIDIMENSIONAL SPACE

It is possible to introduce graphical means to rep-
resent the dimensions taken into consideration. We:
can define several straight lines with the same starting
point, as shown in figure 4: they serve to describe
time, pitch, dynamics, disorder, density, etc. A point
in such a multidimensional domain is a sound, very
short in time, whose characteristics are described by
coordinates plotted on all the axes (points on lines).
In the simplest case we can take only two dimen-
sions — pitch and time; if a sound does evolve in these
five dimensions it can be represented by a more com-
plex shape.

The concept of multidimensional space needs some
explanation. In order to define one-dimensional (1D)
‘space’ one has to take a reference point and a unit
measure (figure 5). Any point P placed on such a line
has logical validity because one can measure its dis-
tance from a reference point R. In two dimensions
we can take two lines and fix the space by relating
each point to two points on the axes. In other words
we have a plane surface and every point on it can be

disorder
pitch

elc.

time

density

Figure 4. A multidimensional space of sounds.
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Figure 5. One-dimensional ‘space’.

refated to two lines, This is a 2D space (figure 6). By
adding a third line in the same way we can obtain a
3D space.

It was discovered historically how to represent 3D
objects on a 2D surface by means of perspective. In
ancient paintings there was a kind of perspective.
This was rediscovered and fully developed during the
Renaissance, when on a picture a horizon was used
as a reference line. This art formed a kind of realism
(even a social realism) from which paintings later
escaped. In modern times we no longer try to treat
the geometry of a picture with this principle of geo-
metric perspective. The representation of 3D objects
in a space of two dimensions — as on canvas — is a
convention developed over quite a long period. When
one looks at the paintings in the caves of Altamira in
France one does not see perspective at all. Perspective
in the fine arts is a representation which enables one
to understand the relationship of 3D objects.

As for more than three dimensions, we do not
know their reality, but we can imagine them. The
theory of relativity uses time as a fourth dimension,
and time is treated geometrically as an extra spatial
dimension. In physics and mathematics we can use
an infinity of dimensions. To define one point on one
line we need one number; to define a point in a multi-
dimensional space we need as many numbers as there
are dimensions. Each point in an n-dimensional space
is defined by an ordered set of n values. In the case
of musical multidimensional space these values rep-
resent the characteristics of a sound.

So indeed music has aspects of multidimensional
space.

Traditionally music has two established dimen-
sions — time and pitch. Historically others were then
added, e.g. dynamics, although these were rather

Figure 6
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Two Form (a movement)
One Phrases, Chords
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Figure 7. Levels of a musical work.

vaguely represented in instrumental music. With the
development of electronic and computer music, mul-
tidimensionality of sound representation turned out
to be both natural and useful. But music goes beyond
multidimensionality — it is even more complex. In
music we have several layers which can be described
as shown in figure 7. At the bottom, at level zero, are
the elements discussed earlier — easy to describe and
well understood from traditional music. Here are the
elementary things: pitches, time instants, levels of
intensity. At the next level we have aggregates of
these elernents - for example, in instrumental music
we might have melodic patterning, as in a theme. At
an even higher level we have interrelationships of a
more complex character, ‘

‘We may continue this argument by regarding even
the whole movement of a sonata or symphony as a
vet higher-order structure again. I think this explains
why traditional classical music up to the end of the
nineteenth century or even into the twentieth century
seems more complex than contemporary, avant-garde
music. It has a sttucture of many simultaneous layers,
which surround the listener. One has to listen to
pitches, time instants and durations, dynamics,
phrases, themes, structures of movements and so on
simultaneously, even if one is not entirely conscious
of it. While perceiving music one is in all the domains,
on all levels at the same time.

In music we have not only the multidimensionality
of space (five or even seven dimensions), but a much
more complex way of thinking, perhaps the most
complex in the whole of human creation. Music is
like a multiple sandwich, but a transparent one.
Whilst in the middle of it, one can see at the same
time lower or higher layers everywhere.

Contemporary music and, even more so, electronic
and computer music, is not as rich in structure; it
does not have as many layers as instrumental music
of the past. This is probably because of the departure
from what we call a classic phase in the evolution of
music in the West. During classic phases of architec-
ture, sculpture, painting and music, there are many
layers to be found in a work of art. Following these
phases, when things start to change in a more funda-
mental or ‘barbarian’ way, they are simplified, some-
times perhaps over-simplified, and the artist has to
add other elements in order to make the art complex
again. This is not yet the case with contemporary
music.




6. SYMMETRY AND DETERMINACY

Let us return to the subject introduced at the begin-
ning of this article. The problem at the root of all
these layers, of the ways in which they are con-
structed, is again the problem of repetitions, of sym-
metries and the problem of the destruction and
change of these symmetries in the flow of musical
movement. It is like being in the flow of a stream or
river, where everything is either expected or happens
unexpectedly. Therefore our problem is linked with
the question of determinacy and indeterminacy in the
widest sense and with so-called causality in physics,
which is an aspect of determinacy.

Below the zero-level of instrumental music that I
have discussed, there are deeper levels which are dealt
with by experimental and theoretical acoustics.

The first of these lower levels is described in the
language of sound synthesis, which is based on Four-
ier analysis of sound structure. This is the level of the
analysis or synthesis of harmonics. Below this level
is — due to computers — the level of the individual
sound samples, up to 50,000 samples per second, rep-
resenting a very high fidelity in the analysis of a
sound. Probably one can discover even lower levels;
I am personally convinced that sampling rates should
go higher than 50,000 per second, because even at
that level there is already quite a distortion.

We have identified the problem of the discovery of
determinacy and indeterminacy, the two poles
between which music goes back and forth, and the
first suggestion of a solution comes from distributing
points on a line,

7. NOTATION

The image of a line with points on it, which is close
to the musician and to the tradition of music, is very
useful. The representation of characteristics of sound
by points and lines is a tradition which started long
ago,

It may have begun as long ago as the Babylonians,
but certainly the musical accents used in Hellenistic
Alexandria may represent the origins of this way of
thinking, In this notation the movement of a pitch
line going upwards or downwards was represented by
a graphic sign - an accent. This was a spatial rep-
resentation of a phenomenon that had nothing to do
with space. Later on in music this kind of represen-
tation was linked with cheironomy, the movement of
the hand — ¢.g. the gestures of a person conducting a
group of singers, which is at the root of neumatic
notation.

Now, the fact that we can use a line with points
on it, a geometric representation of the characteristics
of sound, enables us to make a further translation
which is essential for work with computers and as a
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means of manipulating the characteristics of sounds.
1t is the translation to real numbers.

Both graphicai and digital forms may represent
characteristics of sound, and in the computer either
may be converted into the other. Later I will discuss
a computer system developed in Paris called UPIC,
which is based on a graphical notation and which is
easy to use.

8. DISCRETE AND CONTINUOUS FORMS

Everything considered so far has originated from a
discrete way of considering music, discrete in the
sense that we have well-defined objects which can be
associated in a combinatorial manner. Another, per-
haps more general, way of thinking is to consider the
aspects of sound as continucus. Let us become more
abstract and regard the sound as a form in which we
are able to distinguish some features. Our ability to
discern these features stems from the evolution of the
human mind and culture. We should talk about the
social and cultural aspects of musical sound, some of
which are perhaps rooted in our brain structure,
which is hereditary. The ordered structures previously
discussed are very likely to have a hereditary origin
rather than a socio-cultural one.

Here we distinguish some features of a sound that
can be called characteristic at the elementary level
and also at higher-order levels. We can perceive these
characteristics because of our training or because of
our cultural conditioning, and they are considered to
be discrete — the easiest way to grasp and deal with
things in the objective world.

The continuous changing of these forms is more
difficult to comprehend because they are in a process
of evolution all the time. This fact occurs not only in
music but also in different domains of sciences like
physics and mathematics. The continuity is more dif-
ficult to observe and to deal with, and also to theorise
about, but it is a basic aspect that has always existed
in music, although in a less developed way than the
discrete ome, The cultures of Asia provide us with
examples of continuous change in pitch and intensity.
We may very easily observe continuous variation in
the pitch and intensity domains employed by per-
formers in Japan or China. Whilst playing the
shamisen or the biwa the performers continuously
change the pitch subtly, increasing the musical inter-
est through added expression.

Glissandi represent only one aspect of continuity
in the musical domain, which has always existed but
in the West came to the fore only after the Second
World War. Examples from the intensity domain in
the West are older. The continuous flow of intensity
with crescendo and decrescendo was first introduced
some centuries ago. And in the domain of time we
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may also find aspects of continuous change such as
accelerando and decelerando.

With the assistance of computer synthesis it is
possible to imagine changes in many other domains
of musical structure taking place in a continuous way.
This makes the computer a most powerful tool to
generalise the flow of sounds, but it is based on the
same principles as before: the continuity that can be
foreseen. Accidents or surprises - i.e. indeterminacy -
should rule the continuity domain in much the same
way as they rule the discrete domain.

9. AN ILLUSTRATIVE EXAMPLE -
JONCHAIES (1977) - WORK FOR
LARGE ORCHESTRA

The title of my work Jonchaies means a kind of
marsh-reed. We have fields of such plants in France.
Some of the reeds are bent in one direction, others in
different directions, so there is a multiplicity of direc-
tions in patches and paths.

In Jonchaies there are very rhymthical parts,
rhythms like a chromatic scale in time, and examining
the score one would notice the progressions from
rhythmical, foreseeable patterns into more complex
ones which finally break into a vast number of scat-
tered rhythms.

The rhythmic structures progress from regularity
to irregularity. The regular principle is easy to
achieve. In the case of the irregular progression, there
are two methods available. One is to construct irregu-
larity by means of some probability distribution. The
other way is based on the inability of the human
brain to follow wide complexity. Let me give an
example. We will take again the image of a line with
points on it. We can illustrate regular events by
points an equal distance apart. On a second, lower
parallel line, more points represent other regular pat-
terns with a different time unit, so they are shifted
with respect to the first line’s points even if they start
together. This procedure can be repeated with regular
points on other lines. When we hear all these lines
together, we obtain a flow of events which consist of
a regular intervallic series, but which as a whole is
impossible to grasp (figure 8). Our brain is totally
unable to follow such a complicated, multilayered
flow. This is a basic rhythmic principle which was
used in the composition of Jonchaies.

The same principle was also applied to the
domains of pitch and time. Many lines were created

which were supported by various groups of instru-
ments. As a result there was a mass of events, in
which — because of the complexity — separate occur-
rences could not be distinguished. From time to time
different fragments of these lines could be heard, but
this depended on their intensity.

For the listener it is perhaps like being in a river,
drowning, and holding on to one log or another,
depending on whether you can catch them or not. So
there is a flow of expectancy and denial. Of course,
this is an external metaphor. Within the music there
are other elements which cannot be so easily illus-
trated. When one writes a piece one may think one
consciously controls everything, but in fact this can-
not be the case.

People tend to overestimate the importance of
consciousness. Consciousness is like the tip of an ice-
berg. It is like saying that we can control something
by the rational means of physics, mathematics or the
rules of music — such rules that we have learnt or
that we have created. Actually, all this is a matter of
decisions made without one being aware of them. In
art, as in science, creation is based on intuition much
more than on rational elements, which come
afterwards.

When Newton posed the principles of his mech-
anics it was because he felt them first. Suddenly there
was a kind of conscious recognition of what he felt
and then he was obliged to express it in a more rigor-
ous way, by rationalising and inventing a new math-
ematics in order to express clearly what he had felt.
This relationship between rationality, consciousness,
control and that which is not controlled exists in
other domains as well as in music. In mathematics, it
is interesting to read how Cantor proposed his set
theory. All the anxiety of the discovery that he felt is
written in his letters and even in his ways of demon-
strating the theory. It is interesting because an artist
behaves in the same way. Cantor had problems in his
mind, but in order to show what he felt he had to
find a language for expressing his thoughts. His the-
ories were at first very hotly debated and opposed by
other mathematicians who did not feel the way he
felt, despite his attempts to prove his discoveries
rationally.

I think that the antinomy between rationality and
irrationality is false. The contradiction is so much a
matter of discussion among critics and lay people,
especially in art, who say: ‘It is not music, it is not
art. It is just a matter of computation, therefore this
music is not valid.’

There is no such thing as creation by rationality.
The computer, which has arisen through the wealth
of achievements of the human mind through the mil-
lennia, cannot create anything new. Several math-
ematicians, for instance the Nobel prize-winner
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Figure 9. A chromatic scale of semitones as points on a line.

Simon Newell, tried to create theorems with the com-
puter. Recently it was demonstrated that this is not
possible. Beneath the level of consciousness there lies
all this fantastic amount of intuition that ultimately
leads to a rational expression, but without this
intuition it is impossible to create anything.

This is one reason for the failure of Newell's
experiments with the computer. The other reason was
proved in logic and general mathematics by Godel.
Inside a logical system, undecidable oppositions exist.
One has to go outside the system in order to prove
things cccurring within the system.

This is particularly important for the artistic
domain, where rationality seems to be something
marginal. It is not marginal, but basic; however, the
importance of intuition in artistic creativity over-
shadows rational thinking.

Back to Jonchaies. There was the problem of the
flow of the music based on continuity, We had trans-
formations which were continuous, with glissandi or
the quantity of information which could not be
grasped as discrete. The principles of this piece were
.based both on physiological limits of the mind and
also conceptual trends, such as going from com-
plexity to simplicity and vice versa.

For me it is always important to go to the limits,
to push them, as it were, and to explore these
domains which, in a sense, are beyond the aesthetical
concerns of art. What is interesting to notice is that
in other artistic domains the same sorts of things
happen.

The listener may notice that at the beginning of
Jonchaies in the string parts and in the percussion
there are some problems of scales, proposed and
solved. The question of scales underlies at least all
instrumental music. Wheu writing for instruments the
composer uses a scale which is assumed to be there —
i.e. the chromatic well-tempered scale. It is a set of
pitches, and one allows oneself to choose any of the
pitches from the set, adopting a structure which is
ready-made. It is again like choosing points on a line
(figure 9). However, one can also provide oneselfl with
a different set of pitches, another structure, giving a
different possibility of choice. One can have, for
instance, the diatonic scale, which has a more com-
plex structure than the chromatic scale. In the
diatonic scale we have: tone, tone, semitone, tone,
tone, tone, semitone (2, 2, 1,2, 2,2, 1). This structure,
although it uses fewer elements than the chromatic
scale, is more complex because of its internal asym-
metries. The same can also happen in time, in the

domain of thythm. If one takes the pattern
2,2,1,2,2,2,1 and repeats it in time, one obtains a
pattern more complex than a repeating pulse.

The evolution of rhythm in the work of composers
like Stravinsky or Bartdk was actually based on the
use of new symmetries and repeating patterns. The
general question is whether one can produce patterns
different from those adopted previously, and in what
way can one achieve it? The solution lies in creating
different scales in time, pitch, and other character-
istics of sound which in experiments prove to be
musically interesting. Several examples of such scales
have been tested and assimilated by cultures of
South-Eastern Asia — in Japan, Baii, India and
China, although in the pitch domain all of their scales
are very symmetric, octaviating. Rhythmic passages
also occur as repetitious ones, as in Indian music.

The theoretical problem is the following: Is there
any way to create a new type of scale in relation to
the inner symmetries produced by the intervals? This
again can be related to the problem of constructing
the positions of time points on a straight line. Again
the basic principle is to go from symmetry to asym-
metry or vice versa. The main activity of our minds
is to compare things and find similarities, or the lack
of them, between phenomena. We say that things are
similar or are not similar, or they are distant, and
how far distant, and we express judgements based on
these comparisons.

So how can we originate systems of points that are
symmetric or asymmetric, and how can we initiate
movement from one to the other? This problem is
very important in computer music.

Suppose we have a 2D space of amplitude and
time (see figure 10). Let us assume a numerical ampli-
tude space of 16 bits, i.e. 65,536 possible points, while

Amplitude

Time
Figure 10
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in time we use a sampling rate of, say, 50,000 samples
per second. This is like using a chromatic scale in two
directions, in which compiex shapes correspond o
the music we hear, i.e. the vartation of the atmos-
pheric pressure with time. The basic problem for the
originator of computer music is how to distribute
points on a line.

If a composer has a strong inner necessity, then a
musical organism, which is a kind of universe,
evolves. Either things have to be, or they do not exist.

16. UPIC

The UPIC system consists of a large board, on which
one can draw different lines with a ball-point pen,
and a computer, to which both the board and the pen
are linked. If one designs a line on the board it is
interpreted by the computer, at first in 2D space -
pitch and time. Therefore, if one draws a line parallel
to the time axis, the corresponding sound has a ste-
ady pitch and a given duration in time (figure 11). If
one draws a curve it means that pitch is changing in
a continuous manner (figure 12(a)). If one draws
many lines a kind of polyphony is created (figure
12(b)).

Now, we can ask a question about these lines.
What intensity do they have? So, for each line one
has to design intensity envelopes on the board. Let
us suppose the sound we have drawn is a sustained
pitch — a horizontal line. If one creates an intensity
curve starting from zero, going up in amplitude shar-
ply and then slowly decaying, the result will be a kind
of percussive sound (figure 13(a)). If one designs a
square shape the result is a sound held without any
variation in intensity (figure 13(b)), or if one is feeling
very imaginative, a complex curve representing con-
tinuous changes in amplitude, can be drawn (figure
13(c)). Any curve can be considered when designing
the envelope and instructing the computer in how to
interpret this curve.

For the time being let vs consider a note that is at
a constant pitch, with a certain duration, and also
having an intensity envelope. Now we may ask what
is the timbre of the sound? One has to design it.

Figure 11

(a)

(b)
Figure 12
(a)
)]
(c)
Figure 13




Figure 14

If one now draws the curve shown in figure 14,
representing a single period of a waveform, we obtain
an electronic sine wave sound. Feeling more imagin-
ative, one may design one period of any waveform,
and this will result in a particular timbre. Now we
have defined a note which is a pitch in time, with its
envelope and timbre. We may design many notes in
the same way, creating for each its own envelope and
timbre — it is like creating a full orchestra.

This is the principle of UPIC, at the first level.
UPIC stands for Unité Polyagogique Informatique du
CeMAMu, a neclogism which T invented. It was
developed in Paris in 1976 at the Centre d’Etudes de
Mathematique et Automatique Musicale.

The board is akin to the page of a score. The user
draws lines representing the notes, and each line is
associated with an envelope and an elementary wave-
form. When one asks the computer to calculate the
sounds, one needs to specify the duration of the
page — whether it is one minute long, or two seconds.
If there is a complex page and we calculate it to be
played in a short span of time, then the aural result
is very different from that produced by the same page
executed slowly, over a long duration. This of course
depends on the physiology of our ears and the inte-
gration capacity of our hearing.

Let us take a simple example. If one has slow,
rhythmically repeated beats one can appreciate them
as a rhythm, but when the repetition is very fast, 20
or 25 beats per second, then the ear cannot follow the
thythm and transforms it into a pitch and a timbre.
It is interesting to see that when the beats are slow
one can almost count them, as when listening to
music or at the dentist counting the seconds until the
treatment is finished. But when the beats become too
fast, our counting changes into a kind of feeling for
the pitches. This is also a kind of macroscopic count-
ing, but a very precise one. It would be interesting to
look into the processing of this information by the
ear and brain, to determine the way in which our
hearing system is constructed. The counting used in
our ear is in certain respects not regular, it is a stat-
istical counting of the firings of electric impulses by
the auditory nerve cells.
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Coming buck to UPIC, on which we have designed
several papes in the way described earlier, we should
now be able to make an interconnection between
these pages, or carry oul a certain kind of mixing
between them.

Suppose we want to incorporate one of these writ-
ten pages into some other design. This is possible by
using computer memory. At one side of the board
there are black spots or cells which one can press with
the pen; they correspond to specific commands for
the computer. If something designed on the board
should be considered as a waveform, one presses a
specific spot which corresponds to the instruction
“This is a waveform’. Another spot means ‘Page ter-
minated’ — press it and the computer considers all the
lines drawn on the board as notes in the pitch-versus-
time domain.

On the left-hand side of the board there is a kind
of keyboard which corresponds to five octaves of
pitch. The accuracy or precision of pitch is about one
twentieth of a comma, i.e. about oneg eightieth of a
semitone. Beneath the board there are cells which
connect with a storage system. If one designs a curve
and likes it, one can store it. There are banks of stor-
age for the waveforms, envelopes and pages.

There is also a screen on which one can see the
response of the computer to what has been designed,
so that one can check what to do. Some of the
instructions on the right-hand side of the board are,
for example, ‘Show the page on the screen’, ‘Show
the waveform’, and so on, or ‘Listen to such and such
a page’. When one prepares a score for the UPIC one
draws with a normal pencil and then traces over the
lines with the special ball-point pen, which is connec-
ted to the computer.

One does need a little practice drawing the lines.
When the system is used by musicians or students of
music, they tend to apply what they know. However,
it is best to go further than one knows - even making
mistakes with the hand one can find new and interest-
ing sounds. Often children begin by drawing houses,
but soon learn how to coordinate the design with the
sound result. I have discovered there are two categor-
ies of people who tend to produce interesting results.
The first category is children between ten and twelve
years of age. They are revolutionary — they do not
have preconceptions, and at the age of twelve they
have alert mental capabilities that have not yet been
stultified by school and family. The second category

Figure 15
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is those adults who have never played a musical
instrument,

11. SOUND STRUCTURE AND SOUND
SYNTHESIS

I should now like to discuss sound structure and
sound synthesis in relation to my work Légende d 'Er,
which was produced on the UPIC system.

When we listen to music we actually hear vari-
ations of atmospheric pressure with time. The ear
recognises a Beethoven symphony as music, but if we
look at the screen of an oscilloscope showing us the
continuous changes of air pressure caused by the
sound of this symphony, then the eye cannot dis-
tinguish what is happening there.

The purest form of sound for the ear is a sine
wave, which mathematically is a continuously vary-
ing trigonometrical function. Mathematically speak-
ing the simplest type of waveform would be the
square wave, with alternating presence and absence
of a signal (figure 15). However, the ear does not
agree with this mathematical simplicity. To the ear
this is much more noisy than the smooth sine wave.
Those who are involved in clectronic music know this
very well.

Now, what is noise? So-called white noise can be
represented by a curve with no smoothness at all, and
no periodicity (figure 16). So noise could be created
by a random walk in the computer using probabilit-
ies. There are many probabilities available as func-
tions, many with their own ‘personality’ which one
can perceive from the different kinds of noise that
they produce. An example is the logistic distribution.

A given distribution can be regarded as channelled
between two elastic mirrors, or borders. I should
explain this, When a ball is thrown at a wall, it hits
the wall; let us suppose that there is no loss of energy
and the ball rebounds according to the rules of
reflection. This means that the ball bounces with the
same energy — a kind of elastic rebound (figure 17(a)).
If we throw the ball in a direction perpendicular to
the wall, it is like looking into a mirror (figure 17(b)).
If we regard the wall as a mirror, then an image
appears behind the wall at the same distance as the
rebounded ball in front of the wall (figures 17(c} and
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(d)). If there were some absorption of energy, the dis-
tance of the image to the wall would be smaller than
that of the origin of the ball to the wall; with an
increase of energy the distance would be greater. The
symmetric bouncing of the ball is the simplest case. |
introduce this idea because of the need to discuss the
use of probability distributions.

When we use a probability distribution we may
obtain values greater than a certain value designated
as our upper limit. If we design 2 complex curve, each
point on the curve will have a certain coordinate y;
when this is calculated we will obtain the probability
distribution as a function of time: y = f(2) (figure 18).
However, the amplitude of y may be very large and
sometimes go beyond the acceptable limit. In a com-
puter, we might use 16 bits to express our maximum
amplitude, and the calculated value of y may exceed
this. In order to keep the values inside the limit we
have to do something, so we take this limit as an
elastic one, and if a value exceeds it by a certain
amount we take the symmetric point below the limit.
1t is like taking the magnitude of the overshoot
reflected by the same length.

Such procedures can be applied with distributions
other than the logistic, for example with exponential
and hyperbolic functions, also using the elastic bar-
riers. All of these produce complex sounds in a com-
puter very easily. This contrasts with traditional
sound synthesis which starts from pure sounds like
the sine tone and superposes them to create richer
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sounds, even up to the complexity of noise. Using the
principle of harmonic analysis, it is possible to create
a route from simplicity to higher complexity (figure
19). How might one reverse this progression? By
starting from random walks produced by stochastic
functions, and by injecting symmetries, regularities
and periodicities, even up to the point of repeated
waveforms.

T used such sounds in the Diatope called Légende
&’ Er. In another piece I used the Cauchy distribution,
which has its own characteristic features. I also cre-
ated sounds with the macroscopic evolution produced
by the combination of a random distribution with a
symmetric function. These ideas were originally pro-
posed in the last chapter of my book Formalized
Music. At that time they were not proved — one might
have bright ideas but if they do not work they are
not bright after ail!

So eventually I did demonstrate the possibility of
going from complexity to simplicity in sound syn-
thesis, of a new method of sound production not
refated to harmonic analysis. There is still much to
be done in this domain; the results could be very
interesting if it were further explored. This explo-
ration need have nothing to do with the UPIC sys-
tem; it is a problem of programming and research.
However, I am convinced that for the discovery of
yet-unknown sound qualities a higher sampling rate
is necessary, as well as the use of more than 16 bits.

My pocket computer has a simple language in
which there are only 87 commands. The aim of the
program I use is to create a series of points in the
pitch-time domain; this could produce a melodic pat-
tern, for instance a kind of Brownian movement. For
each point we need the pitch and the instant of its
occurrence. The computer is too small to calculate
more characteristics of the sound, so what the
machine calculates each time is a couple of values.

Let us number the keys of a piano keyboard from
0 to 86, so that these numbers can represent the
pitches of the sounds. For time values we take what-
ever approximation we need: crotchets, quavers, and
so on, depending on what limits we choose.

In order to calculate the time we can use a special
sub-program called EXPON, based on the
exponential distribution, Let us say that we have two
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notes separsted by a certain time interval . The prob-
ability for the next f is given by the formula

(N f(= e dr.

The time instants give just the attacks of the
sounds; there is no duration, no intensity, no timbre.
& is the linear density of the attacks, i.e. the average
number of points per time unit. For example, 8 could
be an average of one sound per second or cne sound
per half-second. In such a way we can calculate the ¢
values.

The next step is to calculate the features of another
function - say the Cauchy function. If we denote the
pitch by x, the probability of x in the Cauchy distri-
bution is given by the formula

(14
@ S T@ )
where « is a scaling factor. This gives the values of #
t;, 12, and so on, Now we have to cumulate the #’s by
adding each time the calculated ¢ value in order to
get a progression. In this way we can arrive at the
cumulation of the Cauchy distribution, the sigma of
the x’s. Why? Because this distribution gives negative
and positive values ranging from minus infinity to
plus infinity, while the ¢ in the formula gives only
values from zero to infinity, and the infinite values
are very rare. When 7 becomes very large the likeli-
hood of its occurrence predicted by the formula
approaches zero.

In the Cauchy distribution there is no mean value,
no curve representing the expected values, and since
it contains values from minus infinity to plus infinity
we need to put it within limits.

A problem arises: How can we construct any func-
tion of a probability distribution? We can solve it by
using a theorem, which says that if we have a random
number (uniform distribution) between 0 and 1 — let
us call it y — and if we take the sum of all values
between minus infinity and the point x of the prob-
ability distribution (i.e. if we take the integral of the
sum of all probabiiity values from minus infinity up
to a point which we call ((x)), then we can take x
out of the equation, which simplifies matters greatly.

For instance, if we plot the @ function up to a
point T, then Q(T) is equal to this area, and we have
y expressed as a function of ¢ (figure 20):

® y= J fod.
0

A similar method can be adopted for almost all prob-
ability distributions, and in this way the intervals or
values of the probability may be generated. There is
a special name for this exponential formula - the
Poisson distribution,
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In physics a special physical model exists for this
distribution. If we have a radioactive element and
approach it with a Geiger tube, and convert the scin-
tillation of the particles in the Geiger tube into sound,
we have a special random rhythm of noises which
follows exactly the Poisson law. As the ‘Geiger coun-
ter’ approaches the radioactive source, the density of
the scintillation increases, and as it is taken away the
average density decreases. The average density of
noise clicks heard corresponds at all times with the
parameters set by the Poisson distribution.

Instead of having a radioactive clement in one’s
pocket, one can simulate the probability distributions
with the computer, using the equations given above.
We need to choose a random number y between Zero
and one and insert it into the formula

T
@ y=J Sodr,

[

then do the cumulation, and end up with result 7.

We start with a generator of random numbers such
as a computer, although this may seem paradoxical,
the computer being a deterministic machine. The for-
mula used to do this is

(5) Xi= (x,',‘a'i'c) mOdM-

We obtain a number x; from a preceding result x;-
by multiplying it by a factor @ plus another term ¢,
modulo another given number M. (What is a mod-
ulo? It is very simple: suppose we have the number
13 modulo 7. Divide 73 by 7 and the remainder is 3
so 73 modulo 7=3.)

If we take the number M we will have all the poss-
ible numbers x; between zero and M, and if we divide
this number by M we have a number between zero
and one, which leads us to the © function in both
distributions; we obtain each time a ‘gun’ - like the
radioactive gun — which tells us the value of T in
every instance. Since the Cauchy distribution can
include values from minus infinity to plus infinity, we
have to specify limits, to reflect back into our numeri-
cal space the values which are outside the specified
limits. As the outcome of the whole program w¢
obtain pairs of numbers, for instance (1, 39), which
specify the tirpe and the corresponding pitch.

The data that we have 1o enter into the formula
arc the parameters of the probability distributions:
M. o8 a,¢; 1 use a value of M= 22, Of course we
need to know in advance what range 1S required, what
the density of events is, and so on. The placement of
the limits depends on the nature of the music
intended; for example, if one is writing for violin, the
limits should be adapted to the violin range.

I have referred many times to ‘domains’; while it
is possible to transform one domain according to the
laws of another, this can never be done without pen-
alty. There are many things specific to one domain
which do not occur in other domains. Many mistakes
result from this, especially in computer music. The
ideas should stem from problems in one’s own
domain, despite the fact that there are chances of
connection with other domains. One has to be sure
that one uses tools in a way appropriate to the field
in question.

I shall give an example, but not from music. For
many years the Poisson distribution constituted a
mathematical problem, and only at the beginning of
this century did a retired Prussian General named
Bortkiewicz prove that Poisson’s law actually
describes events from physical reality. Bortkiewicz
counted the occurrence of events without causality —
the death of soldiers looking after horses in peace-
time — over a period of ten years. He proved that the
frequency of deaths followed the Poisson
distribution.

There are many examples of similar happenings in
the history of science. For instance, non-Euclidean
geometries were thought of in mathematics as bizarre
and abstract, until after Einstein they became a
reality. This involved a transfer from one totally
abstract domain into another physical and astro-
physical domain.

Here is an example from music: musical notation
was invented a long time ago when Guido d’Arezzo
proposed staves for writing down pitches, with the
direction from left to right corresponding to time, as
in writing. This connection of two dimensions, 1.e.
pitch and time forming a ‘space’, was achieved long
before analytical geometry, which came centuiies
later.

Again, in the fine arts, we can appreciate that
mosaics, which produce shapes — visible, under-
standable, recognisable patterns — by using stones of
different colours, represent a kind of statistical
approach. This involves the issue of pattern recog-
npition so popular in contemporary psychology. Simi-
lar issues emerged in the pointillistic school of French
painting at the end of the nineteenth century; these
issues are close to those of ancient mosaics in a way,
but freer in style.

The ideas that emerge in fine art somehow overlap
the same ideas in science or psychology. So it is poss-
ible to use in one domain something drawn from




another, more advanced domain, providing it has its
Own necessity.

Another example in music is the group structure,
Musicians discovered and employed such ideas much
earlier than mathematicians dealt with group theory.
Mathematicians like Klein and Galois worked in the
nineteenth century, while musicians used inverted
forms of melodies in the fifteenth century. If the
musicians were more theoretically inclined they
would have discovered group theory themselves!
There are many examples of group thinking in music,
not only the four forms of a melodic pattern.

In my book Formalized Music 1 tried to show that
if musicians were aware of the problems in their own
domain, we would have a ‘kinetic music theory” anal-
ogous to the ‘kinetic gas theory’ in physics. The basic
principles of kinetic gas theory, which are described

by statistical mechanics, are very simple and very gen-
eral. They can be found in music as well.

The same can be said about symmetry, an import-
ant principle in music. So if one follows a similar
thread of thought from another domain, one arrives
at the same results but from a musical point of view.

12. CONCLUDING REMARKS

In the fifth century BC the Greek philosopher
Parmenides wrote, “To think and to be is the same’.
This was modified by later philosophers. Descartes
said, ‘Cogito ergo sum’ — ‘I think therefore I am’,
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and Berkeley stated that there is no objective world,
because there is no proof of its existence.

In Parmenides’ statement we have the equation:
thought = reality. In the idealistic version there is an
arrow: thought—reality. In materialism, which says
that thought is a reflection of reality, the arrow is
reversed: thought « reality.

My paraphrase of the verse of Parmenides would
be: “To be and not to be is the same’. ! first expressed
this thought in an article in 1958, published in the
Gravesaner Bldrter, No, 11. There I continued:

Ontology. In a Universe of emptiness. A brief train
of waves, of which end and beginning coincide.
Time is triggered, again and again. The Nothing-
ness resolves, creates. It is the generator of being,
of time, of causality.

Fifteen years later I found the same idea being
expressed in the domain of astrophysics. It was specu-
lated that the entire universe evolved from literally
nothing. Yet my thoughts came out of purely musical
considerations.

These issues are interesting for musicians, whether
composers, interpreters or listeners, because they rep-
resent fundamental guestions for music. The problem
of nothingness is identical to the problem of orig-
inality. A composer should be original, should create
his music uninfluenced by the past. In a way he
should act as the whole universe does: Nothingness
creating . ...




