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Preface

The formalization that I attempted in trying to reconstruct part of the
musical edifice ex nihilo has not used, for want of time or of capacity, the
most advanced aspects of philosophical and scientific thought. But the
escalade is started and others will certainly enlarge and extend the new thesis.
This book is addressed to a hybrid public, but interdisciplinary hybridiza-
tion frequently produces superb specimens.

I could sum up twenty years of personal efforts by the progressive
filling in of the following Table of Coherences. My musical, architectural,
and visual works are the chips of this mosaic. It is like a net whose variable
lattices capture fugitive virtualities and entwine them in a multitude of
ways. This table, in fact, sums up the true coherences of the successive
chronological chapters of this book. The chapters stemmed from mono-
graphs, which tried as much as possible to avoid overlapping.

But the profound lesson of such a table of coherences is that any
theory or solution given on one level can be assigned to the solution of
problems on another level. Thus the solutions in macrocomposition on the
Families level (programmed stochastic mechanisms) can engender simpler
and more powerful new perspectives in the shaping of microsounds than the
usual trigonometric (periodic) functions can. Therefore, in considering
clouds of points and their distribution over a pressure-time plane, we can
bypass the heavy harmonic analyses and syntheses and create sounds that
have never before existed. Only then will sound synthesis by computers and
digital-to-analogue converters find its true position, free of the rooted but
ineflectual tradition of electronic, concrete, and instrumental music that
makes use of Fourier synthesis despite the failure of this theory. Hence, in
this book, questions having to do mainly with orchestral sounds (which are
more diversified and more manageable) find a rich and immediate applica-
tion as soon as they are transferred to the Microsound level in the pressure-
time space. All music is thus automatically homogenized and unified.

Vil




viii Preface to the Second Edition

“Everything is everywhere” is the word of this book and its Table of
Coherences; Herakleitos would say that the ways up and down are one.

The French edition, Musiques Formelles, was produced thanks to Albert
Richard, director of La Revue Musicale. The English edition, a corrected and
completed version, results from the initiative of Mr. Christopher Butchers,
who translated the first six chapters. My thanks also go to Mr. G. W.
Hopkins, and Mr. and Mrs. John Challifour, who translated Chapters V1I
and VIII, respectively; to Mr. Michael Aronson and Mr. Bernard Perry of
Indiana University Press, who decided to publish it; and finally to Mrs.
Natalie Wrubel, who edited this difficult book with infinite patience,
correcting and rephrasing many obscure passages.

1. X,

1970

TaBLe (MosAic) oF COHERENCES

Philosophy (in the etymological sense)
Thrust towards truth, revelation. Quest in everything, interrogation, harsh criticism, active knowledge through
creativity.
Chapters (in the sense of the methods followed)
Partially inferential and experimental Entirely inferential and experimental Other methods
to come
SCIENCES (OF MAN, NATURAL) "
PHYSICS, MATHEMATICS, LOGIC

ARTS (VISUAL, SONIC, MIXED . . .)

This is why the arts are freer, and can therefore guide the sciences, which are entirely inferential and experimental.
Categories of Questions (fragmentation of the directions leading to creative knowledge, to philosophy)

REALITY (EKI.STENT[ALITT); CAUSALITY ; INFERENCE: CONNEXITY; COMPACTNESS; TEMPORAL AND SPATIAL UBIQUITY

AS A CONSEQUENCE OF NEW MENTAL STRUCTURES; INDETERMINISM . . . < bi-pole — ... DETERMINISM; . .
4 b
Families of Solutions or Procedures (of the above categories)
FREE STOCHASTIC  MARKOVIAN GAMES GROUPS
I3 materialized by
a computer pro-
1 gram
Pieces (examples of particular realization) } - } 1
ACHORRIPSIS ANALOGIQUE A DUEL AKRATA
st/10-1, 080262 ANALOGIQUE B STRATEGIE NOMOS ALPHA
? sT/48-1, 240162 SYRMOS NOMOS GAMMA
ATREES

MORSIMA-AMORSIMA

Classes of Sonic Elements (sounds that are heard and recognized as a whole, and classified with respect to their sources)
ORCHESTRAL, ELECTRONIC (produced by analogue devices), cONCRETE (microphone collected), piGiTAL (realized
with computers and digital-to-analogue converters), . . .

Microsounds
Forms and structures in the pressure-time space, recognition of the classes to which microsounds belong or which
microstructures produce.

Microsound types result from questions and solutions that were adopted at the CATEGORIES, FAMILIES, and PIECES
levels.

Preface to Musiques Formelles

This book is a collection of explorations in musical composition pursued in
several directions. The effort to reduce certain sound sensations, to under-
stand their logical causes, to dominate them, and then to use them in wanted
constructions; the effort to materialize movements of thought through sounds,
then to test them in compositions; the effort to understand better the pieces
of the past, by searching for an underlying unit which would be identical
with that of the scientific thought of our time; the effort to make ““art”
while ‘‘ geometrizing,” that is, by giving it a reasoned support less perishable
than the impulse of the moment, and hence more serious, more worthy of
the fierce fight which the human intelligence wages in all the other domains
—all these efforts have led to a sort of abstraction and formalization of the
musical compositional act. This abstraction and formalization has found,
as have so many other sciences, an unexpected and, I think, fertile support
in certain areas of mathematics. It is not so much the inevitable use of
mathematics that characterizes the attitude of these experiments, as the
overriding need to consider sound and music as a vast potential reservoir in
which a knowledge of the laws of thought and the structured creations of
thought may find a completely new medium of materialization, i.e., of
communication,

For this purpose the qualification *“beautiful” or “ugly” makes no
sense for sound, nor for the music that derives from it; the quantity of
intelligence carried by the sounds must be the true criterion of the validity
of a particular music.

This does not prevent the utilization of sounds defined as pleasant or
beautiful according to the fashion of the moment, nor even their study in
their own right, which may enrich symbolization and algebration. Efficacy
is in itself a sign of intelligence. We are so convinced of the historical
necessity of this step, that we should like to see the visual arts take an

ix




X Preface to Musiques Formelles

analogous path—unless, that is, “artists’” of a new type have not already
done it in laboratories, sheltered from noisy publicity.

These studies have always been matched by actual works which mark
out the various stages. My compositions constitute the experimental dossier
of this undertaking. In the beginning my compositions and research were
recognized and published, thanks to the friendship and moral and material
support of Prof. Hermann Scherchen, Certain chapters in the present work
reflect the results of the teaching of certain masters, such as H. Scherchen
and Olivier Messiaen in music, and Prof. G. Th. Guilbaud in mathematics,
who, through the virtuosity and liberality of his thought, has given me a
clearer view of the algebras which constitute the fabric of the chapter
devoted to Symbolic Music,

I X.

1962

Preface to the Pendragon Edition

Here is a new expanded edition of Formalized Music. It invites two fundamen-
tal questions:

Have the theoretical propositions which I have made over the past
thirty-five years

a) survived in my music ?
b) been aesthetically efficient ?

To the first question, I will answer a general “yes.” The theories which I
have presented in the various chapters preceding this new edition have
always been present in my music, even if some theories have been mingled
with others in a same work. The exploration of the conceptual and sound
world in which I have been involved necessitated an harmonious or even
conflicting synthesis of earlier theses. It necessitated a more global
architectural view than a mere comparative confrontation of the various
procedures. But the supreme criterion always remained the validation, the
aesthetic efficiency of the music which resulted.

Naturally, it was up to me and to me alone to determine the aesthetic
criteria, consciously or not, in virtue of the first principle which one can not
get around. The artist (man) has the duty and the privilege to decide, radically
alone, his choices and the value of the results. By no means should he choose
any other means; those of power, glory, money, ...

Each time, he must throw himself and his chosen criteria into question
all while striving to start from scratch yet not forget. We should not
“monkey” ourselves by virtue of the habits we so easily acquire due to our
own “echolalic” properties. But to be reborn at each and every instant, like a
child with a new and “independent” view of things.

All of this is part of a second principle: It is absolutely necessary to free
oneself, as much as possible, from any and all contingencies.

xi




xii Preface

This may be considered man’s destiny in particular, and the universe's
in general. Indeed, the Being’s constant dislocations, be they continuous or
not, deterministic or chaotic (or both simultaneously) are manifestations of
the vital and incessant drive towards change, towards freedom without
return. ‘

An artist can not remain isolated in the universal ocean of forms and
their changes. His interest lies in embracing the most vast horizon of
knowledge and problematics, all in accordance with the two principles
presented above. From hence comes the new chapter in this edition entitled
“Concerning Time, Space and Music.”

Finally, to finish with the first question, I have all along continued to
develop certain theses and to open up some new ones. The new chapter on
“Sieves” is an example of this along with the computer program presented in
Appendix III which represents a long aesthetic and theoretical search. This
research was developed as well as its application in sound synthesis on
UPIC.*

Another approach to the mystery of sounds is the use of cellular
automata which I have employed in several instrumental compositions these
past few years. This can be explained by an observation which I made: scales
of pitch (sieves) automatically establish a kind of global musical style, a sort of
macroscopic “synthesis” of musical works, much like a “spectrum of
frequencies, or iterations,” of the physics of particles. Internal symmetries or
their dissymmetries are the reason behind this. Therefore, through a
discerning logico-aesthetic choice of “non-octave” scales, we can obtain very
rich simultaneities (chords) or linear successions which revive and generalize
tonal, modal or serial aspects. It is on this basis of sieves that cellular
automata can be useful in harmonic progressions which create new and rich
timbric fusions with orchestral instruments. Examples of this can be found in
works of mine such as Ata, Horos, etc.

Today, there is a whole new field of investigation called “Experimental
Mathematics,” that gives fascinating insights especially in automatic dynamic
systems, by the use of math and computer graphics. Thus, many structures
such as the already- mentioned cellular automata or those which possess self-

*UPIC—Unité Polygogique Informatique du CEMAMu. A sort of musical drawing
board which, through the digitalization of a drawing, enables one to compose
music, teach acoustics, engage in musical pedagogy at any age. This machine was
developed at the Centre d’Etudes de Mathématiques et Automatiques Musicales de
Paris.

Preface xiii

similarities such as Julia or Mandelbrot sets, are studied and visualized. These
studies lead one right into the frontiers of determinism and indeterminism.
Chaos to symmetry and the reverse orientation are once again being studied
and are even quite fashionable! They open up new horizons, although for
me, the results are novel aspects of the equivalent compositional problems I
started dealing with about thirty-five years ago. The theses presented in the
earlier editions of this book bear witness to this fact although the dynamic of
musical works depends on several levels simultaneously and not only on the
calculus level.

An important task of the research program at CEMAMu is to develop
synthesis through quantified sounds but with up-to-date tools capable of
involving autosimilitudes, symmetries or deterministic chaos, or stochastics
within a dynamic evolution of amplitude frequency frames where each pixel
corresponds to a sound quantum or “phonon,” as already imagined by
Einstein in the 1910s. This research, which I started in 1958 and wrongly
attributed to Gabor, can now be pursued with much more powerful and
modern means. Some surprises can be expected!

In Appendix IV of this edition, a new, more precise formulation of
stochastic sound synthesis can be found as a follow-up of the last chapter of
the preceding edition of Formalized Music (presented here as Chapter IX). In
the interim, this approach has been tested and used in my work La Légende
d’Eer for seven-track tape. This approach was developed at the CEMAMu in
Paris and worked out at the WDR, the West-German National Radio studio
in Cologne. This work was part of the Diatope which was installed for the
inauguration of the Pompidou/Beaubourg Center in Paris. The event was
entirely automated with a complete laser installation and 1600 electronic
flashes. This synthesis is part of CEMAMu’s permanent research program.

In this same spirit, random walks or Brownian movements have been
the basis for several of my works, especially instrumental pieces such as
N’Shima, which means “breath” or “spirit” in Hebrew; for 2 female voices, 2
French Horns, 2 trombones and 1 'cello. This piece was written at the request
of Recha Freier, founder of the “Aliya movement” and premiered at the
Testimonium Festival in Jerusalem.

The answer to the second question posed at the beginning of this
Preface is not up to me. In absolute terms, the artisan musician (not to say
creator) must remain doubtful of the decisions he has made, doubtful,
however subtly, of the result. The percentage of doubt should not exist in
virtue of the principles elaborated above. But in relative terms, the public, or
connoisseurs (either synchronic or diachronic), alone decide upon a work’s




Xiv Preface

efficiency. However, any culture’s validation follows “seasonal” rules, varying
between periods of a few years to centuries or even millennia. We must never
forget the nearly-total lack of consideration Egyptian art suffered for over
2000 years, or Meso-American art. :

One can assimilate a work of art, or, let us say, just a work, ‘to the
information we can put on a document, seal in a bottle which we will throw
into the middle of the ocean. Will it ever be found? When and by whom and
how will it be read, interpreted?

My gratitude and thanks go to Sharon Kanach, who translated and
supervised the new material in this updated edition of Formalized Music and to
Robert Kessler, the courageous publisher.

Formalized Music
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Chapter |

Free Stochastic Music

Art, and above all, music has a fundamental function, which is to catalyze
the sublimation that it can bring about through all means of expression. It
must aim through fixations which are landmarks to draw towards a total
exaltation in which the individual mingles, losing his consciousness in a
truth immediate, rare, enormous, and perfect. If a work of art succeeds in
this undertaking even for a single moment, it attains its goal. This tremen-
dous truth is not made of objects, emotions, or sensations; it is beyond these,
as Beethoven’s Seventh Symphony is beyond music. This is why art can lead
to realms that religion still occupies for some people.

But this transmutation of every-day artistic material which transforms
trivial products into meta-art is a secret. The “possessed” reach it without
knowing its *“mechanisms.” The others struggle in the ideological and tech-
nical mainstream of their epoch which constitutes the perishable “climate”
and the stylistic fashion. Keeping our eyes fixed on this supreme meta-artistic
goal, we shall attempt to define in a more modest manner the paths which
can lead to it from our point of departure, which is the magma of contra-
dictions in present music.

There exists a historical parallel between European music and the
successive attempts to explain the world by reason. The music of antiquity,
causal and deterministic, was already strongly influenced by the schools of
Pythagoras and Plato. Plato insisted on the principle of causality, “for it is
impossible for anything, to come into being without cause” (7Timaeus).
Strict causality lasted until the nineteenth century when it underwent a

The English translation of Chaps. I-VI is by Christopher A. Butchers.
1
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4 Formalized Music

brutal and fertile transformation as a result of statistical theories in physics.
Since antiquity the concepts of chance (tyche), disorder (ataxia), and dis-
organization were considered as the opposite and negation of reason (logos),
order (faxis), and organization (systasis). It is only recently that knowledge
has been able to penetrate chance and has discovered how to separate its
degrees—in other words to rationalize it progressively, without, however,
succeeding in a definitive and total explanation of the problem of ““pure
chance.”

After a time lag of several decades, atonal music broke up the tonal
function and opened up a new path parallel to that of the physical sciences,
but at the same time constricted by the virtually absolute determinism of
serial music.

It is therefore not surprising that the presence or absence of the principle
of causality, first in philosophy and then in the sciences, might influence
musical composition. It caused it to follow paths that appeared to be diver-
gent, but which, in fact, coalesced in probability theory and finally in
polyvalent logic, which are kinds of generalization and enrichments of the
principle of causality. The explanation of the world, and consequently of the
sonic phenomena which surround us or which may be created, necessitated
and profited from the enlargement of the principle of causality, the basis of
which enlargement is formed by the law of large numbers. This law implies
an asymptotic evolution towards a stable state, towards a kind of goal, of
stochos, whence comes the adjective ““stochastic.”

But everything in pure determinism or in less pure indeterminism is
subjected to the fundamental operational laws of logic, which were disen-
tangled by mathematical thought under the title of general algebra.
These laws operate on isolated states or on sets of elements with the aid of
operations, the most primitive of which are the union, notated U, the
intersection, notated N, and the negation. Equivalence, implication, and
quantifications are elementary relations from which all current science can
be constructed.

Music, then, may be defined as an organization of these elementary
operations and relations between sonic entities or between functions of
sonic entities. We understand the first-rate position which is occupied by
set theory, not only for the construction of new works, but also for analysis
and better comprehension of the works of the past. In the same way a
stochastic construction or an investigation of history with the help of
stochastics cannot be carried through without the help of logic—the queen
of the sciences, and I would even venture to suggest, of the arts—or its
mathematical form algebra. For everything that is said here on the subject

Free Stochastic Music 5

is also valid for all forms of art (painting, sculpture, architecture, films,
etc.).

From this very general, fundamental point of view, from which we wish
to examine and make music, primary time appears as a wax or clay on which
operations and relations can be inscribed and engraved, first for the purposes
of work, and then for communication with a third person. On this level, the
asymmetric, noncommutative character of time is use (B after 4 # A after
B, i.e., lexicographic order). Commutative, metric time (symmetrical) is
subjected to the same logical laws and can therefore also aid organizational
speculations. What is remarkable is that these fundamental notions, which
are necessary for construction, are found in man from his tenderest age, and
it is fascinating to follow their evolution as Jean Piaget! has done.

After this short preamble on generalities we shall enter into the details
of an approach to musical composition which I have developed over several
years. I call it ““stochastic,” in honor of probability theory, which has served
as a logical framework and as a method of resolving the conflicts and knots
encountered.

The first task is to construct an abstraction from all inherited conven-
tions and to exercise a fundamental critique of acts of thought and their
materialization. What, in fact, does a musical composition offer strictly on
the construction level ? It offers a collection of sequences which it wishes to
be causal. When, for simplification, the major scale implied its hierarchy of
tonal functions—tonics, dominants, and subdominants—around which the
other notes gravitated, it constructed, in a highly deterministic manner,
linear processes, or melodies on the one hand, and simultaneous events, or
chords, on the other. Then the serialists of the Vienna school, not having
known how to master logically the indeterminism of atonality, returned to
an organization which was extremely causal in the strictest sense, more ab-
stract than that of tonality; however, this abstraction was their great con-
tribution. Messiaen generalized this process and took a great step in sys-
tematizing the abstraction of all the variables of instrumental music. What
is paradoxical is that he did this in the modal field. He created a multimodal
music which immediately found imitators in serial music. At the outset
Messiaen’s abstract systematization found its most justifiable embodiment
in a multiserial music. It is from here that the postwar neo-serialists have
drawn their inspiration. They could now, following the Vienna school and
Messiaen, with some occasional borrowing from Stravinsky and Debussy,
walk on with ears shut and proclaim a truth greater than the others. Other
movements were growing stronger; chief among them was the systematic
exploration of sonic entities, new instruments, and “noises.” Varése was the




1st Peak

A. Ground profile of the left half of
the “stomach.” The intention was to
build a shell, composed of as few
ruled surfaces as possible, over the
ground plan. A conoid (e) is con-
structed through the ground profile
curve ; this wall is bounded by two
straight lines : the straight directrix
(rising from the left extremity of the
ground profile), and the outermost
generatrix (passing through the right
extremity of the ground profile). This
produces the first “peak” of the
pavilion.

B. A ruled surface consisting of two
conoids, a and d, is laid through the
curve bounding the right half of the
“stomach.” The straight directrix of
passes through the first peak, and the
outermost generatrix at this side forms
a triangular exit with the generatrix of
e. The straight directrix of a passes
through a second peak and is joined
by an arc to the directrix of d.

This basic form is the one used in
the first design and was retained, with
some modifications, in the final
structure. The main problem of the
design was to establish an aesthetic
balance between the two peaks.

1st Peak

C. Attempt to close the space between
the two ruled surfaces of the first
design by flat surfaces (which might
serve as projection walls).

Fig. I-3. Stages in the Development of the First Design of the
Philips Pavilion

1st Peak

D. Another attempt. Above the

entrance channel a small triangular
opening is formed, flanked by two
hyperbolic paraboloids (g and k), and
the whole is covered with a horizontal
top surface.

~7 2nd Peak

1st Peak

E. FElaboration of D. The third peak Triangular Exit

begins to take shape (shyly).
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2nd Peak

F. The first design completed (see
also the first model, Fig. 1-4). There
are no longer any flat surfaces. The
third peak is fully developed and
creates, with its opposing sweep, a
counterbalance for the first two peaks.
The heights of the three peaks have
been established. The third peak and
the small arc connecting the straight
directrixes of conoids a and d (see B.)
form, respectively, the apex and the
base of a part of a cone /,
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8 Formalized Music

pioneer in this field, and electromagnetic music has been the beneficiary
(electronic music being a branch of instrumental music). However, in
electromagnetic music, problems of construction and of morphology were not
faced conscientiously. Multiserial music, a fusion of the multimodality of
Messiaen and the Viennese school, remained, nevertheless, at the heart of
the fundamental problem of music.

But by 1954 it was already in the process of deflation, for the completely
deterministic complexity of the operations of composition and of the works
themselves produced an auditory and ideological nonsense. I described the
inevitable conclusion in “The Crisis of Serial Music”:

Linear polyphony destroys itself by its very complexity; what one
hears is in reality nothing but a mass of notes in various registers. The
enormous complexity prevents the audience from following the inter-
twining of the lines and has as its macroscopic effect an irrational
and fortuitous dispersion of sounds over the whole extent of the sonic
spectrum. There is consequently a contradiction between the poly-
phonic linear system and the heard result, which is surface or mass.
This contradiction inherent in polyphony will disappear when the
independence of sounds is total. In fact, when linear combinations
and their polyphonic superpositions no longer operate, what will
count will be the statistical mean of isolated states and of transforma-
tions of sonic components at a given moment. The macroscopic effect
can then be controlled by the mean of the movements of elements
which we select. The result is the introduction of the notion of proba-
bility, which implies, in this particular case, combinatory calculus.
Here, in a few words, is the possible escape route from the “linear
category’’ in musical thought.?

This article served as a bridge to my introduction of mathematics in
music. For if, thanks to complexity, the strict, deterministic causality which
the neo-serialists postulated was lost, then it was necessary to replace it by
a more general causality, by a probabilistic logic which would contain strict
serial causality as a particular case. This is the function of stochastic science.
“Stochastics™ studies and formulates the law of large numbers, which has
already been mentioned, the laws of rare events, the different aleatory
procedures, etc. As a result of the impasse in serial music, as well as other
causes, I originated in 1954 a music constructed from the principle of
indeterminism; two years later I named it ““Stochastic Music.” The laws
of the calculus of probabilities entered composition through musical
necessity.

But other paths also led to the same stochastic crossroads—first of all,

Free Stochastic Music 9

natural events such as the collision of hail or rain with hard surfaces, or the
song of cicadas in a summer field. These sonic events are made (.Jut c_:)f thou-
sands of isolated sounds; this multitude of sounds, seen as a totality, is a new
sonic event. This mass event is articulated and forms a plastic mold of time,
which itself follows aleatory and stochastic laws. If one then wishes to form a
large mass of point-notes, such as string pizzicati, one m'ust know thf:-sc
mathematical laws, which, in any case, are no more than a tight and concise
expression of chain of logical reasoning. Everyone has observed the sonic
phenomena of a political crowd of dozens or hundreds of thousands of
people. The human river shouts a slogan in a uniform }*hythm. Then another
slogan springs from the head of the demonstration; it spreads towards the
tail, replacing the first. A wave of transition thus passes from.the head to the
tail. The clamor fills the city, and the inhibiting force of voice and rhythm
reaches a climax. It is an event of great power and beauty in its ferocity.
Then the impact between the demonstrators and the enemy occurs. T]?C
perfect rhythm of the last slogan breaks up in a huge cluster of chaotic
shouts, which also spreads to the tail. Imagine, in addition, the reports of
dozens of machine guns and the whistle of bullets adding their punctuations
to this total disorder. The crowd is then rapidly dispersed, and after sonic
and visual hell follows a detonating calm, full of despair, dust, and death.
The statistical laws of these events, separated from their political or moral
context, are the same as those of the cicadas or the rain. They are the laws of
the passage from complete order to total disorder in a continuous or explo-
sive manner. They are stochastic laws.

Here we touch on one of the great problems that have haunted human
intelligence since antiquity: continuous or discontinuous transforma'tit_an.
The sophisms of movement (e.g., Achilles and the tortoise) or of -d'eﬁmtlon
(e.g., baldness), especially the latter, are solved by statistical deﬁmtlor'l; that
is to say, by stochastics. One may produce continuity with cithe.r continuous
or discontinuous elements. A multitude of short glissandi on strings can give
the impression of continuity, and so can a multitude of pizzicati. Passages
from a discontinuous state to a continuous state are controllable with the
aid of probability theory. For some time now I have been conduc?ing these
fascinating experiments in instrumental works; but the mathematical char-
acter of this music has frightened musicians and has made the approach
especially difficult.

Here is another direction that converges on indeterminism. The study
of the variation of rhythm poses the problem of knowing what the limit.of
total asymmetry is, and of the consequent complete disruption of c?usahty
among durations. The sounds of a Geiger counter in the proximity of a
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radioactive source give an impressive idea of this. Stochastics provides the
necessary laws.

Before ending this short inspection tour of events rich in the new logic,
which were closed to the understanding until recently, I would like to in-
clude a short parenthesis. If glissandi are long and sufficiently interlaced,
we obtain sonic spaces of continuous evolution. It is possible to produce
ruled surfaces by drawing the glissandi as straight lines. I performed this
experiment with Metastasis (this work had its premiere in 1955 at Donau-
eschingen). Several years later, when the architect Le Corbusier, whose
collaborator I was, asked me to suggest a design for the architecture of the
Philips Pavilion in Brussels, my inspiration was pin-pointed by the experi-
ment with Metastasis. Thus I believe that on this occasion music and archi-
tecture found an intimate connection.® Figs. I-1-5 indicate the causal chain
of ideas which led me to formulate the architecture of the Philips Pavilion
from the score of Metastasis.

Fig. I-4. First Model of Philips Pavilion

Free Stochastic Music

Fig.

I-5. Philips Pavilion, Brussels World’s Fair, 1958
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STOCHASTIC LAWS AND INCARNATIONS

I shall give quickly some of the stochastic laws which I introduced into
composition several years ago. We shall examine one by one the independent
components of an instrumental sound.

DURATIONS

Time (metrical) is considered as a straight line on which the points
corresponding to the variations of the other components are marked. The
interval between two points is identical with the duration. Among all the
possible sequences of points, which shall we choose? Put thus, the question
makes no sense.

Ifa mean number of points is designated on a given length the question
becomes: Given this mean, what is the number of segments equal to a length
fixed in advance?

The following formula, which derives from the principles of continuous
probability, gives the probabilities for all possible lengths when one knows
the mean number of points placed at random on a straight line.

e ST el L (See Appendix I.)

in which 8 is the linear density of points, and x the length of any segment.

If we now choose some points and compare them to a theoretical
distribution obeying the above law or any other distribution, we can deduce
the amount of chance included in our choice, or the more or less rigorous
adaptation of our choice to the law of distribution, which can even be
absolutely functional. The comparison can be made with the aid of tests,
of which the most widely used is the x? criterion of Pearson. In our case,
where all the components of sound can be measured to a first approxima-
tion, we shall use in addition the correlation coefficient. It is known that if
two populations are in a linear functional relationship, the correlation
coefficient is one. If the two populations are independent, the coefficient is
zero. All intermediate degrees of relationship are possible.

Clouds of Sounds

Assume a given duration and a set of sound-points defined in the
intensity-pitch space realized during this duration. Given the mean super-
ficial density of this tone cluster, what is the probability of a particular
density occurring in a given region of the intensity-pitch space? Poisson’s
Law answers this question:

/%
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H_je”n)

p!

Free Stochastic Music 13

where p, is the mean density and p is any particular density. As with
durations, comparisons with other distributions of sound-points can fashion

the law which we wish our cluster to obey.
INTERVALS OF INTENSITY, PITCH, ETC.

For these variables the simplest law is

o) dy = = (1~ 2)

a

(See Appendix 1.)

which gives the probability that a segment (interval of intensity, pitch, etc.)
within a segment of length a, will have a length included within y and

y + dy, for 0<y<a.

SPEEDS

We have been speaking of sound-points, or granular sounds, which are
in reality a particular case of sounds of continuous variation. Among these
let us consider glissandi. Of all the possible forms that a glissanc_lo sound can
take, we shall choose the simplest—the uniformly continuous glissando. 'I:hlS
glissando can be assimilated sensorially and physically into the_mathematlcal
concept of speed. In a one-dimensional vectorial representation, tlhe scalfxr
size of the vector can be given by the hypotenuse of the right triangle in
which the duration and the melodic interval covered form the other two
sides. Certain mathematical operations on the continuously variable sounds
thus defined are then permitted. The traditional sounds of wind instruments
are, for example, particular cases where the speed is zero. A glissando
towards higher frequencies can be defined as positive, towards lower fre-
quencies as negative. .

We shall demonstrate the simplest logical hypotheses which lead us
to a mathematical formula for the distribution of speeds. The arguments
which follow are in reality one of those ‘‘logical poems’ which the human
intelligence creates in order to trap the superficial incohere:}cies of physical
phenomena, and which can serve, on the rebound, as a point of dt:l:');{.rtu?e
for building abstract entities, and then incarnations of these entities in
sound or light. It is for these reasons that I offer them as examples:

Homogeneity hypotheses [11]*

1. The density of speed-animated sounds is constant; i.e., two regions
of equal extent on the pitch range contain the same average number of
mobile sounds (glissandi).

* The numbers in brackets correspond to the numbers in the Bibliography at the
end of the book.




4. 1he absolute value oOf speeds (ascending or descending giissandil] 18
spread uniformly; i.e., the mean quadratic speed of mobile sounds is the
same in different registers.

3. There is isotropy; that is, there is no privileged direction for the
movements of mobile sounds in any register. There is an equal number of
sounds ascending and descending.

From these three hypotheses of symmetry, we can define the function
f(v) of the probability of the absolute speed v. ( f(v) is the relative frequency
of occurrence of v.) Y

Let n be the number of glissandi per unit of the pitch range (density
of mobile sounds), and r any portion taken from the range. Then the number
of speed-animated sounds between » and v + dv and positive, is, from
hypotheses 1 and 3:

nrifl(v) dv (the probability that the sign is + is 4).

From hypothesis 2 the number of animated sounds with speed of
absolute value |v| is a function which depends on 2% only. Let this function
be g(v?). We then have the equation

nrif(v) dv = nrg(v?) do.

Moreover if ¥ = », the probability function g(2?) will be equal to the law
of probability H of x, whence g(v?) = H(x), or log g(v*) = h(x).

In order that k(x) may depend only on x? = ¢ it is necessary and
sufficient that the differentials d log g(v®) = &'(x) dx and v dv = x dx have a
constant ratio:

dlog g(v?)  A'(x) dx

= = constant = —2j,

v dy x dx

whence #'(x) = —2jx, h(x) = —ja® + ¢, and H(x) = ke™*",

But H(x) is a function of elementary probabilities; therefore its integral
from —oo to 400 must be equal to 1. j is positive and £k = 1/j/4/7. If
7 = 1/a?, it follows that

%f("") i g(Uz) = H(x) = a'\l/ﬂ_g"v”m“
and
£0) = o e

for v = x, which is a Gaussian distribution.

118 chaln o1 reasoning borrowed irom aul Levy was established alter
Maxwell, who, with Boltzmann, was responsible for the kinetic theory of
gases. The function f(v) gives the probability of the speed v; the constant a
defines the “temperature” of this sonic atmosphere. The arithmetic mean
of v is equal to a/4/m, and the standard deviation is a/4/2.

We offer as an example several bars from the work Pithoprakia for string
orchestra (Fig. I-6), written in 1955-56, and performed by Prof. Hermann
Scherchen in Munich in March 1957.* The graph (Fig. I-7) represents a
set of speeds of temperature proportional to a = 35. The abscissa represents
time in units of 5 cm = 26 MM (Milzel Metronome). This unit is sub-
divided into three, four, and five equal parts, which allow very slight
differences of duration. The pitches are drawn as the ordinates, with the
unit I semitone = 0.25 cm. 1 cm on the vertical scale corresponds to a major
third. There are 46 stringed instruments, each represented by a jagged line.
Each of the lines represents a speed taken from the table of probabilities
calculated with the formula

LI
T ay/w

A total of 1148 speeds, distributed in 58 distinct values according to Gauss’s
law, have been calculated and traced for this passage (measures 52-60, with
a duration of 18.5 sec.). The distribution being Gaussian, the macroscopic
configuration is a plastic modulation of the sonic material. The same passage
was transcribed into traditional notation. To sum up we have a sonic
compound in which:

e~ via?,

S()

The durations do not vary.
The mass of pitches is freely modulated.
The density of sounds at each moment is constant.
The dynamic is ff without variation.
The timbre is constant.
6. The speeds determine a *temperature” which is subject to local
fluctuations. Their distribution 1s Gaussian.

DU TR IRD)

As we have already had occasion to remark, we can establish more or
less strict relationships between the component parts of sounds.> The most
useful coefficient which measures the degree of correlation between two
variables x and y is

SE-Ae -7
VE - VI -
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where ¥ and 7 are the arithmetic means of the two variables.

Here then, is the technical aspect of the starting point for a utilization
of the theory and calculus of probabilities in musical compomtlon. With
the above, we already know that:

1. We can control continuous transformations of large sets of granular
and/or continuous sounds. In fact, densities, durations, registers, speeds,
etc., can all be subjected to the law of large numbers with the necessary
approximations. We can therefore with the aid of means and deviations
shape these sets and make them evolve in different directions. The best
known is that which goes from order to disorder, or vice versa, and which
introduces the concept of entropy. We can conceive of qther continuous
transformations: for example, a set of plucked sounds transforming con-
tinuously into a set of arco sounds, or in electromagnetic music, the passage
from one sonic substance to another, assuring thus an organic connection
between the two substances. To illustrate this idea, I recall the Greek
sophism about baldness: ‘“How many hairs must one remove from a hairy
skull in order to make it bald?”’ It is a problem resolved by the theory of
probability with the standard deviation, and known by the term statistical
definition.

2. A transformation may be explosive when deviations from the mean
suddenly become exceptional.

3. We can likewise confront highly improbable events with average
events.

4. Very rarified sonic atmospheres may be fashioned and controlled
with the aid of formulae such as Poisson’s. Thus, even music for a solo
instrument can be composed with stochastic methods.

These laws, which we have met before in a multitude of fields, are
veritable diamonds of contemporary thought. They govern the laws of the
advent of being and becoming. However, it must be well understood that
they are not an end in themselves, but marvelous tools of construction and
logical lifelines. Here a backfire is to be found. This time it is these stochastic
tools that pose a fundamental question: “What is the minimum of logical
constraints necessary for the construction of a musical process?”’ But before
answering this we shall sketch briefly the basic phases in the construction of
a musical work.

B.LH 19583

Fig. I-6. Bars 52-57 of Pithoprakta

e
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FUNDAMENTAL PHASES OF A MUSICAL WORK

1. Initial conceptions (intuitions, provisional or definitive data);

2. Definition of the sonic entities and of their symbolism communicable
with the limits of possible means (sounds of musical instruments, electronic
sounds, noises, sets of ordered sonic elements, granular or continuous
formations, etc.);

3. Definition of the transformations which these sonic entities must undergo
in the course of the composition (macrocomposition: general choice of
logical framework, i.e., of the elementary algebraic operations and the set-
ting up of relations between entities, sets, and their symbols as defined in
2.); and the arrangement of these operations in lexzcographlc time with the
aid of succession and simultaneity) ;

4. Microcomposition (choice and detailed fixing of the functional or
stochastic relations of the elements of 2.), i.e., algebra outside-time, and
algebra in-time;

5. Sequential programming of 3. and 4. (the schema and pattern of the
work in its entirety);

6. Implementation of calculations, verifications, feedbacks, and definitive
modifications of the sequential program;

7. Final symbolic result of the programming (setting out the music on
paper in traditional notation, numerical expressions, graphs, or other means
of solfeggio) ;

8. Sonic realization of the program (direct orchestral performance,
manipulations of the type of electromagnetic music, computerized construc-
tion of the sonic entities and their transformations).

The order of this list is not really rigid. Permutations are possible in
the course of the working out of a composition. Most of the time these
phases are unconscious and defective. However, this list does establish ideas
and allows speculation about the future. In fact, computers can take in hand
phases 6. and 7., and even 8. But as a first approach, it seems that only
phases 6. and 7. are immediately accessible. That is to say, that the final
symbolic result, at least in France, may be realized only by an orchestra or
by manipulations of electroacoustic music on tape recorders, emitted by the
existing electroacoustic channels; and not, as would be desirable in the very
near future, by an elaborate mechanization which would omit orchestral or
tape interpreters, and which would assume the computerized fabrication of
the sonic entities and of their transformations.

Here now is an answer to the question put above, an answer that is
true for instrumental music, but which can be applied as well to all kinds of
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sound production. For this we shall again take up the phases described:

2. Definition of sonic entities. The sonic entities of the classical orches-
tra can be represented in a first approximation by vectors of four usually
independent variables, %, (¢, h, g, u):

¢, = timbre or instrumental family
h; = pitch of the sound
g; = intensity of the sound, or dynamic form

u;,, = duration of the sound.

The vector E, defines a point M in the multidimensional space provided
by a base (¢, k, g u). This point M will have as coordinates the nur{lbers
¢as iy &> Wi- For example: cg played arco and forte on a violin, one eighth
note in length, at one eighth note = 240 MM, can be represented as
Coor. arcos Mlas (= Ca), &4 (= forte), us (= % sec.). Suppose that these points
M are plotted on an axis which we shall call £,, and that through its origin
we draw another axis ¢, at right angles to axis £,. We shall represent on this
axis, called the axis of lexicographic time, the lexicographic-temporal succession
of the points M. Thus we have defined and conveniently represented a
two-dimensional space (E,, ¢). This will allow us to pass to phase 3., defini-
tion of transformation, and 4., microcomposition, which must contain the
answer to the problem posed concerning the minimum of constraints.

To this end, suppose that the points M defined above can appear with
no necessary condition other than that of obeying an aleatory law without
memory. This hypothesis is equivalent to saying that we admit a stochastic
distribution of the events E, in the space (E,, t). Admitting a sufficiently
weak superficial distribution n, we enter a region where the law of Poisson
is applicable:

I
Pl= ;(—1 £as:

Incidentally we can consider this problem as a synthesis of several
conveniently chosen linear stochastic processes (law of radiation from radio-
active bodies). (The second method is perhaps more favorable for a mecha-
nization of the transformations.)

A sufficiently long fragment of this distribution constitutes the musical
work. The basic law defined above generates a whole family of compositions
as a function of the superficial density. So we have a formal archetype of
composition in which the basic aim is to attain the greatest possible asym-
metry (in the etymological sense) and the minimum of constraints, causalities,
and rules. We think that from this archetype, which is perhaps the most
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general one, we can redescend the ladder of forms by introducing progres-
sively more numerous constraints, i.e., choices, restrictions, and negations.
In the analysis in several linear processes we can also introduce other pro-
cesses: those of Wiener-Lévy, P. Lévy’s infinitely divisibles, Markov
chains, etc., or mixtures of several. It is this which makes this second
method the more fertile.

The exploration of the limits @ and 4 of this archetype ¢ < n < b is
equally interesting, but on another level—that of the mutual comparison of
samples. This implies, in effect, a gradation of the increments of n in order
that the differences between the families n, may be recognizable. Analogous
remarks are valid in the case of other linear processes.

If we opt for a Poisson process, there are two necessary hypotheses
which answer the question of the minimum of constraints: 1. there exists in
a given space musical instruments and men; and 2. there exist means of
contact between these men and these instruments which permit the emission
of rare sonic events,

This is the only hypothesis (cf. the ekklisis of Epicurus). From these
two constraints and with the aid of stochastics, I built an entire composition
without admitting any other restrictions. Achorripsis for 21 instruments was
composed in 1956-57, and had its first performance in Buenos Aires in 1958
under Prof. Hermann Scherchen. (See Fig. 1-8.)

At that time I wrote:*

Al A) -~
70 yap avTo voeiv €oTiv Te kol elva
A} A
70 yap abro elvan éoriv Te Kkal ok elvout

ONTOLOGY
In a universe of nothingness. A brief train of waves, so brief that its end

and beginning coincide (negative time) disengaging itself endlessly.

Nothingness resorbs, creates.
It engenders being.
Time, Causality.

These rare sonic events can be something more than isolated sounds.
They can be melodic figures, cell structures, or agglomerations whose

* The following excerpt (through p. 37) is from ** In Search of a Stochastic Music,”
Gravesaner Blitter, no. 11/12.

T “For it is the same to think as to be” (Poem by Parmenides); and my paraphrase,
“For it is the same to be as not to be.”
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characteristics are also ruled by the laws of chance, for example, clouds of
sound-points or speed-temperatures.® In each case they form a sample of a
succession of rare sonic events.

This sample may be represented by either a simple table of probabilities
or a double-entry table, a matrix, in which the cells are filled by the fre-
quencies of events. The rows represent the particular qualifications of t!)e
events, and the columns the dates (see Matrix M, Fig. I-9). The frequencies
in this matrix are distributed according to Poisson’s formula, which is the
law for the appearances of rare random events.

We should further define the sense of such a distribution and the manner
in which we realize it. There is an advantage in defining chance as an
aesthetic law, as a normal philosophy. Chance is the limit of the notion of
evolving symmetry. Symmetry tends to asymmetry, which in this sense is
equivalent to the negation of traditionally inherited behavioral frameworks.
This negation not only operates on details, but most importantly on the
composition of structures, hence tendencies in painting, sculpture, architec-
ture, and other realms of thought. For example, in architecture, plans worked
out with the aid of regulating diagrams are rendered more complex and
dynamic by exceptional events. Everything happens as if there were one-to-
one oscillations between symmetry, order, rationality, and asymmetry,
disorder, irrationality in the reactions between the epochs of civilizations.

At the beginning of a transformation towards asymmetry, exceptional
events are introduced into symmetry and act as aesthetic stimuli. When
these exceptional events multiply and become the general case, a jump to a
higher level occurs. The level is one of disorder, which, at least in the arts
and in the expressions of artists, proclaims itself as engendered by the com-
plex, vast, and rich vision of the brutal encounters of modern life. Forms
such as abstract and decorative art and action painting bear witness to this
fact. Consequently chance, by whose side we walk in all our daily occupa-
tions, is nothing but an extreme case of this controlled disorder (that which
signifies the richness or poverty of the connections between events and which
engenders the dependence or independence of transformations); and by
virtue of the negation, it conversely enjoys all the benevolent characteristics
of an artistic regulator. It is a regulator also of sonic events, their appearance,
and their life. But it is here that the iron logic of the laws of chance inter-
venes; this chance cannot be created without total submission to its own
laws. On this condition, chance checked by its own force becomes a hydro-
electric torrent.
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However, we are not speaking here of cases where one merely plays
heads and tails in order to choose a particular alternative in some trivial
circumstance. The problem is much more serious than that, It is a matter
here of a philosophic and aesthetic concept ruled by the laws of probability
and by the mathematical functions that formulate that theory, of a coherent
concept in a new region of coherence.

The analysis that follows is taken from Achorripsis.

For convenience in calculation we shall choose a priori 2 mean density

of events

A = 0.6 events/unit.

Applying Poisson’s formula,

Ak
Pk = f! 8_'\
we obtain the table of probabilities:
PO - 0.54’88
P, = 0.3293
P, = 0.0988 (1)
Py = 0.0198
P, = 0.0030
Py = 0.0004.

P; is the probability that the event will occur ¢ times in the unit of
volume, time, etc. In choosing a priori 196 units or cells, the distribution of
the frequencies among the cells is obtained by multiplying the values of
P, by 196.

Number of cells
196 P,

107
65
19 2)
4
1

The 196 cells may be arranged in one or several groups of cells, quali-
fied as to timbre and time, so that the number of groups of timbres times
the number of groups of durations = 196 cells. Let there be 7 distinct
timbres; then 196/7 = 28 units of time, Thus the 196 cells are distributed
over a two-dimensional space as shown in (3).

B LON —~O o,
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Timbre 4

Flute
Oboe
String gliss.

Percussion (3)

Pizzicato

Brass

String arco

If the musical sample is to last 7 minutes (a subjective choice) the unit of
time U, will equal 15 sec., and each U, will contain 6.5 measures at
MM = 26.

How shall we distribute the frequencies of zero, single, double, triple,
and quadruple events per cell in the two-dimensional space of Matrix (3) ?
Consider the 28 columns as cells and distribute the zero, single, double,
triple, and quadruple events from table (2) in these 28 new cells. Take as an
example the single event; from table (2) it must occur 65 times. Everything
happens as if one were to distribute events in the cells with a mean density
A = 65/28 = 2.32 single events per cell (here cell = column).

In applying anew Poisson’s formula with the mean density A = 2.32
(2.32 « 30) we obtain table (4).

Poisson Distribution Arbitrary Distribution

Frequency No.of Product Frequency No.of Product

K Columns col x K K Columns col x K

0 3 0 0 10 0

1 6 6 1 3 3

2 8 16 2 0 0

3 5 15 3 9 27

4 3 g A8 4 0 L
5 2 10 5 1 5

6 1 6 6 3 30

7 0 0 7 0 0

Totals 28 65 Totals 28 65
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One could choose any other distribution on condition that the sum of
single events equals 65. Table (5) shows such a distribution.

But in this axiomatic research, where chance must bathe all of sonic
space, we must reject every distribution which departs from Poisson’s
law. And the Poisson distribution must be effective not only for the columns
but also for the rows of the matrix. The same reasoning holds true for the
diagonals, etc.

Contenting ourselves just with rows and columns, we obtain a homo-
geneous distribution which follows Poisson. It was in this way that the
distributions in rows and columns of Matrix (M) (Fig. I-9) were calculated.

So a unique law of chance, the law of Poisson (for rare events) through
the medium of the arbitrary mean A is capable of conditioning, on the one
hand, a whole sample matrix, and on the other, the partial distributions
following the rows and columns. The a priori, arbitrary choice admitted at
the beginning therefore concerns the variables of the “vector-matrix.”

Variables or entries of the “'vector-matrix’’

1. Poisson’s Law

2. The mean A

3. The number of cells, rows, and columns

The distributions entered in this matrix are not always rigorously
defined. They really depend, for a given A, on the number of rows or col-
umns, The greater the number of rows or columns, the more rigorous is the
definition. This is the law of large numbers. But this indeterminism allows
free will if the artistic inspiration wishes it. It is a second door that is open
to the subjectivism of the composer, the first being the “state of entry” of
the “Vector-Matrix” defined above.

Now we must specify the unit-events, whose frequencies were adjusted
in the standard matrix (M). We shall take as a single event a cloud of sounds
with linear density 8 sounds/sec. Ten sounds/sec is about the limit that a
normal orchestra can play. We shall choose 8 = 5 sounds/measure at MM
26, so that 8§ = 2.2 sounds/sec (~10/4).

We shall now set out the following correspondence:
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SHRE @ Comin Mean number of sounds/cell
Event Sounds/ Sounds/ 15 366)
measure 26 MM sec Gl
Zero 0 0 0
single 5 2.2 2.5
double 10 4.4 65
triple 15 6.6 97.5
quadruple 20 8.8 130

The hatchings in matrix (M) show a Poisson distribution of frequencies,
homogeneous and verified in terms of rows and columns. We notice that
the rows are interchangeable (= interchangeable timbres). So are the
columns. This leads us to admit that the determinism of this matrix is weak
in part, and that it serves chiefly as a basis for thought—for thought which
manipulates frequencies of events of all kinds. The true work of molding
sound consists of distributing the clouds in the two-dimensional space of the
matrix, and of anticipating a priori all the sonic encounters before the
calculation of details, eliminating prejudicial positions. It is a work of
patient research which exploits all the creative faculties instantaneously.
This matrix is like a game of chess for a single player who must follow certain
rules of the game for a prize for which he himself is the judge. This game
matrix has no unique strategy. It is not even possible to disentangle any
balanced goals. It is very general and incalculable by pure reason.

Up to this point we have placed the cloud densities in the matrix. Now
with the aid of calculation we must proceed to the coordination of the
aleatory sonic elements.

HYPOTHESES OF CALCULATION

Let us analyze as an example cell III, ¢z of the matrix: third row,
sounds of continuous variation (string glissandi), seventeenth unit of time
(measures 103-11). The density of the sounds is 4.5 sounds/measure at
MM 26 (8 = 4.5); so that 4.5 sounds/measure times 6.5 measures = 29
sounds for this cell. How shall we place the 29 glissando sounds in this cell ?

Hypothesis 1. The acoustic characteristic of the glissando sound is
assimilated to the speed v = df/dt of a uniformly continuous movement.
(See Fig. 1-10.)

Hypothesis 2. The quadratic mean « of all the possible values of v is
proportional to the sonic density 8. In this case « = 3.38 (temperature).

Hypothesis 3. The values of these speeds are distributed according to the
most complete asymmetry (chance). This distribution follows the law of
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Gauss. The probability f(2) for the existence of the speed v is given by the
function

2

e~ via? :
av/m

Sf) =

and the probability P(2) that » will lie between », and z,, by the function
P(X) = 6(Ag) — 0(Ay),

in which A; = »;/a and
A
PR f ¢ 4\ (normal distribution).
vV Jo

Hypothesis 4. A glissando sound is essentially characterized by a. the
moment of its departure; b. its speed v,, = dffdt, (v; < v, < v5); and c. its
register,

Hypothesis 5. Assimilate time to a line and make each moment of
departure a point on that line. It is as if one were to distribute a number of
points on a line with a linear density 8§ = 4.5 points at MM = 26. This,
then, is a problem of continuous probabilities. These points define segments
and the probability that the i-th segment will have a length x; between

xand x + dx is
P, = 8e™%* dx.

Hypothesis 6. The moment of departure corresponds to a sound. We
shall attempt to define its pitch. The strings have a range of about 80 semi-
tones, which may be represented by a line of length a = 80 semitones. Since
between two successive or simultaneous glissandi there exists an interval
between the pitches at the moments of departure, we can define not only
the note of attack for the first glissando, but also the melodic interval which

separates the two origins,
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Put thus, the problem consists of finding the probability that a segment
s within a line segment of length a will have a length between j and j + dj
(0 < j < a). This probability is given by the formula

a

0() & = 2 (1 % ﬁ) i (See Appendix 1.)

Hypothesis 7. The three essential characteristics of the glissando sound
defined in Hypothesis 4 are independent.

From these hypotheses we can draw up the three tables of probability:
a table of durations, a table of speeds, and a table of intervals.

All these tables furnish us with the elements which materialize in
cell IT1, z. The reader is encouraged to examine the score to see how the
results of the calculations have been used. Here also, may we emphasize,
a great liberty of choice is given the composer. The restrictions are more of
a general canalizing kind, rather than peremptory. The theory and the
calculation define the tendencies of the sonic entity, but they do not con-
stitute a slavery. Mathematical formulae are thus tamed and subjugated
by musical thought. We have given this example of glissando sounds
because it contains all the problems of stochastic music, controlled, up to a
certain point, by calculation.

Table of Durations

8 = 4.5 sounds/measure at MM 26
Unit x = 0.10 of the measure at 26 MM
4.5 -6.5 = 29 sounds/cell, i.e., 28 durations

X ox gl de— 9% S¢"%dx 28P,.
0.00 0.00 1.000 4.500 0.362 10
0.10 0.45 0.638 2.870 0.231 7
0.20 0.90 0.407 1.830 0.148 4
0.30 1.35 0.259 1.165 0.094 3
0.40 1.80 0.165 0.743 0.060 2
0.50 2.25 0.105 0.473 0.038 1
0.60 2.70 0.067 0.302 0.024 1
0.70 8.15 0.043 0.194 0.016 0

Totals 12.415 0.973 28
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An approximation is made by considering dx as a constant factor.

i Se~ % dy = 1.
0

Therefore

dx = l/i of 2,
]

In this case dx = 1/12.415 = 0.805.

Table of Speeds

8 = 4.5 glissando sounds/measure at 26 MM
« = 3.88, quadratic mean of the speeds

v is expressed in semitones/measure at 26 MM
v is the mean speed (v; + v5)/2

4.5-6.5 = 29 glissando sounds/cell.
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v A=ue B PR =00) —0}) 29PN o,
0  0.000  0.0000

0.2869 9 0.5
1 0258  0.2869

0.2510 7 1.5
9 0516  0.5379

0.1859 5 2.5
8., . 0478, 09588

0.1310 4 3.5
4 1032  0.8548

0.0771 9 4.5
5 1228  0.9319

0.0397 1 5.5
6 1545 09716

0.0179 1 6.5
7 1.805  0.9895

0.0071 0 7.5




36 Formalized Music
Table of Intervals

8 = 4.5 glissandi/measure at 26 MM.

a = 80 semitones, or 18 times the arbitrary unit of 4.5 semitones.

J is expressed in multiples of 4.5 semitones.

dj is considered to be constant. Therefore dj = 1/20(j) ordj = a/(m + 1),
and we obtain a step function. Forj = 0, 6(j)dj = 2/(m + 1) = 0.105; for
j = 18, 6(j)dj = o.

4.5-6.5 = 29 glissando sounds per cell.

We can construct the table of probabilities by means of a straight line.

J 0(s) 4 = P(y) 29 P(j)
0€¢———0.105—— 3
1 3
2 3
3 3
4 2
5 2
6 2
7 2
8 2
9 2

10 1

11 1

12 1

13 1

14 1

15 0

16 0

17 0

18 0

We shall not speak of the means of verification of liaisons and correla-
tions between the various values used. It would be too long, complex, and
tedious. For the moment let us affirm that the basic matrix was verified by
the two formulae:
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Let us now imagine music composed with the aid of matrix (M). An
observer who perceived the frequencies of events of the musical sample
would deduce a distribution due to chance and following the laws of
probability. Now the question is, when heard a number of times, will this
music keep its surprise effect? Will it not change into a set of foreseeable
phenomena through the existence of memory, despite the fact that the law
of frequencies has been derived from the laws of chance?

In fact, the data will appear aleatory only at the first hearing. Then,
during successive rehearings the relations between the events of the sample
ordained by “chance” will form a network, which will take on a definite
meaning in the mind of the listener, and will initiate a special ‘“‘logic,” a
new cohesion capable of satisfying his intellect as well as his aesthetic sense;
that is, if the artist has a certain flair.

If, on the other hand, we wish the sample to be unforeseeable at all
times, it is possible to conceive that at each repetition certain data might
be transformed in such a way that their deviations from theoretical fre-
quencies would not be significant. Perhaps a programming useful for a first,
second, third, etc., performance will give aleatory samples that are not identi-
cal in an absolute sense, whose deviations will also be distributed by chance.

Or again a system with electronic computers might permit variations
of the parameters of entrance to the matrix and of the clouds, under certain
conditions. There would thus arise a music which can be distorted in the
course of time, giving the same observer n results apparently due to chance
for n performances. In the long run the music will follow the laws of proba-
bility and the performances will be statistically identical with each other, the
identity being defined once for all by the “vector-matrix.”

The sonic scheme defined under this form of vector-matrix is conse-
quently capable of establishing a more or less self-determined regulation of
the rare sonic events contained in a musical composition sample. It repre-
sents a compositional attitude, a fundamentally stochastic behavior, a unity
of superior order. [1956-57].

If the first steps may be summarized by the process vision — rules —
works of art, the question concerning the minimum has produced an inverse
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path: rules — vision. In fact stochastics permits a philosophic vision, as the
example of Achorripsis bears witness.

CHANCE—IMPROVISATION

Before generalizing further on the essence of musical composition, we
must speak of the principle of improvisation which caused a furore among
the neo-serialists, and which gives them the right, or so they think, to speak
of chance, of the aleatory, which they thus introduce into music. They
write scores in which certain combinations of sounds may be freely chosen
by the interpreter. It is evident that these composers consider the various
possible circuits as equivalent. Two logical infirmities are apparent which
deny them the right to speak of chance on the one hand and ““composition
on the other (composition in the broad sense, that is):

1. The interpreter is a highly conditioned being, so that it is not possible
to accept the thesis of unconditioned choice, of an interpreter acting like a
roulette game. The martingale betting at Monte Carlo and the procession
of suicides should convince anyone of this. We shall return to this.

2. The composer commits an act of resignation when he admits several
possible and equivalent circuits. In the name of a “scheme” the problem of
choice is betrayed, and it is the interpreter who is promoted to the rank of
composer by the composer himself. There is thus a substitution of authors.

The extremist extension of this attitude is one which uses graphical
signs on a piece of paper which the interpreter reads while improvising the
whole. The two infirmities mentioned above are terribly aggravated here.
I would like to pose a question: If this sheet of paper is put before an inter-
preter who is an incomparable expert on Chopin, will the result not be
modulated by the style and writing of Chopin in the same way that a per-
former who is immersed in this style might improvise a Chopin-like cadenza
to another composer’s concerto? From the point of view of the composer
there is no interest.

On the contrary, two conclusions may be drawn: first, that serial
composition has become so banal that it can be improvised like Chopin’s,
which confirms the general impression; and second, that the composer
resigns his function altogether, that he has nothing to say, and that his
function can be taken over by paintings or by cuneiform glyphs.

Chance needs to be calculated

To finish with the thesis of the roulette-musician, I shall add this:
Chance is a rare thing and a snare. It can be constructed up to a certain
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point with great difficulty, by means of complex reasoning which is sum-
marized in mathematical formulae; it can be constructed a little, but never
improvised or intellectually imitated. I refer to the demonstration of the
impossibility of imitating chance which was made by the great mathemati-
cian Emile Borel, who was one of the specialists in the calculus of probabil-
ities. In any case—to play with sounds like dice—what a truly simplistic
activity ! But once one has emerged from this primary field of chance worth-
less to a musician, the calculation of the aleatory, that is to say stochastics,
guarantees first that in a region of precise definition slips will not be made,
and then furnishes a powerful method of reasoning and enrichment of sonic
processes.

STOCHASTIC PAINTING?

In line with these ideas, Michel Philippot introduced the calculus of
probabilities into his painting several years ago, thus opening new direc-
tions for investigation in this artistic realm. In music he recently endeavored
to analyze the act of composition in the form of a flow chart for an imaginary
machine. It is a fundamental analysis of voluntary choice, which leads to a
chain of aleatory or deterministic events, and is based on the work Composi-
tion pour double orchestre (1960). The term imaginary machine means that the
composer may rigorously define the entities and operating methods, just as
on an electronic computer, In 1960 Philippot commented on his Composition
pour double orchestre :

If, in connection with this work, I happened to use the term
““experimental music,”’ I should specify in what sense it was meant in
this particular case. It has nothing to do with concrete or electronic
music, but with a very banal score written on the usual ruled paper
and requiring none but the most traditional orchestral instruments.
However, the experiment of which this composition was in some sense
a by-product does exist (and one can think of many industries that
survive only through the exploitation of their by-products).

The end sought was merely to effect, in the context of a work
which I would have written independent of all experimental ambi-
tions, an exploration of the processes followed by my own cerebral
mechanism as it arranged the sonic elements. I therefore devised the
following steps:

1. Make the most complete inventory possible of the set of my
gestures, ideas, mannerisms, decisions, and choices, etc., which were
mine when I wrote the music.
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2. Reduce this set to a succession of simple decisions, binary, if
possible; i.e., accept or refuse a particular note, duration, or silence in
a situation determined and defined by the context on one hand, and
by the conditioning to which I had been subjected and my personal
tastes on the other.

3. Establish, if possible, from this sequence of simple decisions, a
scheme ordered according to the following two considerations (which
were sometimes contradictory): the manner in which these decisions
emerged from my imagination in the course of the work, and the
manner in which they would have to emerge in order to be most
useful.

4. Present this scheme in the form of a flow chart containing the

" logical chain of these decisions, the operation of whic¢h could easily
be controlled.

5. Set in motion a mechanism of simulation respecting the rules
of the game in the flow chart and note the result.

6. Compare this result with my musical intentions.

7. Check the differences between result and intentions, detect their
causes, and correct the operating rules.

8. Refer these corrections back to the sequence of experimental
phases, i.e., start again at 1. until a satisfactory result has been ob-
tained.

If we confine ourselves to the most general considerations, it
would simply be a matter of proceeding to an analysis of the complex-
ity, considered as an accumulation, in a certain order, of single events,
and then of reconstructing this complexity, at the same time verifying
the nature of the elements and their rules of combination. A cursory
look at the flow chart of the first movement specifies quite well by a
mere glance the method I used. But to confine oneself to this first
movement would be to misunderstand the essentials of musical
composition.

In fact the “preludial” character which emerges from this
combination of notes (elementary constituents of the orchestra)
should remind us of the fact that composition in its ultimate stage is
also an assembly of groups of notes, motifs, or themes and their
transformations. Consequently the task revealed by the flow charts
of the following movements ought to make conspicuous a grouping of
a higher order, in which the data of the first movement were used as
a sort of “prefabricated’’ material. Thus appeared the phenomenon,
a rather banal one, of autogeneration of complexity by juxtaposition
and combination of a large number of single events and operations.

At the end of this experiment I possessed at most some insight into
my own musical tastes, but to me, the obviously interesting aspect of
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it (as long as there is no error of omission!) was the analysis of the
composer, his mental processes, and a certain liberation of the
imagination.

The biggest difficulty encountered was that of a conscious and
voluntary split in personality. On one hand, was the composer who
already had a clear idea and a precise audition of the work he wished
to obtain; and on the other was the experimenter who had to maintain
a lucidity which rapidly became burdensome in these conditions—a
lucidity with respect to his own gestures and decisions. We must not
ignore the fact that such experiments must be examined with the
greatest prudence, for everyone knows that no observation of a
phenomenon exists which does not disturb that phenomenon, and I
fear that the resulting disturbance might be particularly strong when
it concerns such an ill-defined domain and such a delicate activity.
Moreover, in this particular case, I fear that observation might pro-
voke its own disturbance. If I accepted this risk, I did not under-
estimate its extent. At most, my ambition confined itself to the attempt
to project on a marvelous unknown, that of aesthetic creation, the
timid light of a dark lantern. (The dark lantern had the reputation
of being used especially by housebreakers. On several occasions I have
been able to verify how much my thirst for investigation has made me
appear in the eyes of the majority as a dangerous housebreaker of
inspiration.)

Chapter II

Markovian Stochastic Music—Theory

Now we can rapidly generalize the study of musical composition with the
aid of stochastics.

The first thesis is that stochastics is valuable not only in instrumental
music, but also in electromagnetic music. We have demonstrated this with
several works: Diamorphoses 1957-58 (B.A.M. Paris), Concret PH (in the
Philips Pavilion at the Brussels Exhibition, 1958) ; and Orient-Occident, music
for the film of the same name by E. Fulchignoni, produced by UNESCO in
1960.

The second thesis is that stochastics can lead to the creation of new
sonic materials and to new forms. For this purpose we must as a preamble
put forward a temporary hypothesis which concerns the nature of sound, of
all sound [19].

BASIC TEMPORARY HYPOTHESIS (lemma) AND DEFINITIONS

All sound is an integration of grains, of elementary sonic particles, of
sonic quanta. Each of these elementary grains has a threefold nature:
duration, frequency, and intensity.! All sound, even all continuous sonic
variation, is conceived as an assemblage of a large number of elementary
grains adequately disposed in time. So every sonic complex can be analyzed
as a series of pure sinusoidal sounds even if the variations of these sinusoidal
sounds are infinitely close, short, and complex. In the attack, body, and
decline of a complex sound, thousands of pure sounds appear in a more or
less short interval of time, At. Hecatombs of pure sounds are necessary for
the creation of a complex sound. A complex sound may be imagined as a
multi-colored firework in which each point of light appears and instan-
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taneously disappears against a black sky. But in this firework there would
be such a quantity of points of light organized in such a way that their rapid
and teeming succession would create forms and spirals, slowly unfolding, or
conversely, brief explosions setting the whole sky aflame. A line of light would
be created by a sufficiently large multitude of points appearing and dis-
appearing instantaneously.

If we consider the duration Az of the grain as quite small but invariable,
we can ignore it in what follows and consider frequency and intensity only.
The two physical substances of a sound are frequency and intensity in
association. They constitute two sets, ' and G, independent by their nature.
They have a set product F x G, which is the elementary grain of sound. Set F
can be put in any kind of correspondence with G: mdny-valued, single-
valued, one-to-one mapping, . . .. The correspondence can be given by an
extensive representation, a matrix representation, or a canonical represen-
tation.

EXAMPLES OF REPRESENTATIONS

Extensive (term by term):

Frequencies lfl Jo fo S

Intensities Za & & &

Matrix (in the form of a table):

v A fo s fo s Sfo Sa
P IR SR R TN

alo 4000
Ba L 000 s S

Canonical (in the form of a function):

VS = Kg
f = frequency
£ = intensity
K = coefficient.

The correspondence may also be indeterminate (stochastic), and here
the most convenient representation is the matrical one, which gives the
transition probabilities.
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Example:

A A S
|05 0 02 0
g | 0 8% B S L |
ga| 05 07 05 0

The table should be interpreted as follows: for each value f] of f there are
one or several corresponding intensity values g;, defined by a probability.
For example, the two intensities g, and gz correspond to the frequency f,,
with 30%, and 707, chance of occurrence, respectively. On the other hand,
each of the two sets F and G can be furnished with a structure—that is to
say, internal relations and laws of composition.

Time ¢ is considered as a totally ordered set mapped onto F or G in a
lexicographic form.

Examples:

a. f1 fﬁ R b. fos fs f«.u Je
o el s b $ = 00,3 /11, %

c. ﬂﬁfzﬁfzfafnfa """""

t=|A|B|[C|[D|E|-«foee]ee]eee]reef--
At|At| At| At At) At|At]- -]«
At = At

Example ¢. is the most general since continuous evolution is sectioned
into slices of a single thickness A¢, which transforms it in discontinuity; this
makes it much easier to isolate and examine under the magnifying glass.

GRAPHICAL REPRESENTATIONS

We can plot the values of pure frequencies in units of octaves or semi-
tones on the abscissa axis, and the intensity values in decibels on the ordinate
axis, using logarithmic scales (see Fig. II-1). This cloud of points is the
cylindrical projection on the plane (FG) of the grains contained in a thin
slice At (see Fig. II-2). The graphical representations Figs. I1-2 and 1I-3
make more tangible the abstract possibilities raised up to this point.

Psychophysiology

We are confronted with a cloud of evolving points. This cloud is the
product of the two sets F and G in the slice of time Az. What are the possible
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restrictive limits of human psychophysiology? What are the most general
manipulations which may be imposed on the clouds and their transforma-
tions within psychophysiological limits ?

The basic abstract hypothesis, which is the granular construction of all
possible sounds, gives a very profound meaning to these two questions. In
fact within human limits, using all sorts of manipulations with these grain
clusters, we can hope to produce not only the sounds of classical instruments
and elastic bodies, and those sounds generally preferred in concrete music,
but also sonic perturbations with evolutions, unparalleled and unimaginable
until now. The basis of the timbre structures and transformations will have
nothing in common with what has been known until now.

We can even express a more general supposition. Suppose that each
point of these clusters represents not only a pure frequency and its satellite
intensity, but an already present structure of elementary grains, ordered a
priori. We believe that in this way a sonority of a second, third, or higher
order can be produced.

Recent work on hearing has given satisfactory answers to certain
problems of perception. The basic problems which concern us and which
we shall suppose to be resolved, even if some of the solutions are in part
lacking, are [2, 3]: 1. What is the minimum perceptible duration (in com-
fort) of a sinusoidal sound, as a function of its frequency and its intensity ?
2. What are the minimum values of intensities in decibels compatible with
minimum frequencies and durations of sinusoidal sounds? 3. What are the
minimum melodic interval thresholds, as a function of register, intensity,
and duration? A good approximation is the Fletcher-Munson diagram of
equal loudness contours (see Fig. I11-4).

The total number of elementary audible grains is about 340,000. The
ear is more sensitive at the center of the audible area. At the extremities it
perceives less amplitude and fewer melodic intervals, so that if one wished to
represent the audible area in a homogeneous manner using the coordinates
Fand G, i.e., with each surface element AFAG containing the same density
of grains of perceptible sounds, one would obtain a sort of mappa mundi
(Fig. II-5).

In order to simplify the reasoning which will follow without altering it,
we shall base our argument on Fletcher’s diagram and suppose that an
appropriate one-to-one transformation applied to this group of coordinates
will change this curved space into an ordinary rectangle (Fig. II-6).

All the above experimental results were established in ideal conditions
and without reference to the actual complexity of the natural sounds of the
orchestra and of elastic bodies in general, not to mention the more complex
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sounds of industry or of chaotic nature [4]. Theoretically [5] a complex
sound can only be exhaustively represented on a three-dimensional diagram
F, G, t, giving the instantaneous frequency and intensity as a function of
time. But in practice this boils down to saying that in order to represent a
momentary sound, such as a simple noise made by a car, months of calcula-
tions and graphs are necessary. This impasse is strikingly reminiscent of
classical mechanics, which claimed that, given sufficient time, it could
account for all physical and even biological phenomena using only a few
formulae. But just to describe the state of a gaseous mass of greatly reduced
volume at one instant £, even if simplifications are allowed at the beginning
of the calculation, would require several centuries of human work !

This was a false problem because it is useless; and as far as gaseous
masses are concerned, the Maxwell-Boltzmann kinetic theory of gases,
with its statistical method, has been very fruitful [6]. This method re-
established the value of scales of observation. For a macroscopic phenomenon
it is the massed total result which counts, and each time a phenomenon is
to be observed the scale relationship between observer and phenomenon
must first be established. Thus if we observe galactic masses, we must decide
whether it is the movement of the whole mass, the movement of a single star,
or the molecular constitution of a minute region on a star that interests us.

The same thing holds true for complex as well as quite simple sounds.
It would be a waste of effort to attempt to account analytically or graphi-
cally for the characteristics of complex sounds when they are to be used in
an electromagnetic composition. For the manipulation of these sounds
macroscopic methods are necessary.

Inversely, and this is what particularly interests us here, to work like
architects on the sonic material in order to construct complex sounds and
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evolutions of these entities means that we must use macroscopic methods of

analysis and construction. Microsounds and elementary grains have no
importance on the scale which we have chosen. Only groups of grains and
the characteristics of these groups have any meaning. Naturally in very
particular cases, the single grain will be reestablished in all its glory. In a
Wilson chamber it is the elementary particle which carries theoretical and

experimental physics on its shoulders, while in the sun it is the mass of

particles and their compact interactions which constitute the solar object.

Our field of evolution is therefore the curved space described above,
but simplified to a rectilinear space by means of complete one-to-one
transformation, which safeguards the validity of the reasoning which we
shall pursue.

SCREENS

The graphical representation of a cloud of grains in a slice of time At
examined earlier brings a new concept, that of the density of grains per unit
of volume, AFAGAt (Fig. 11-7). Every possible sound may therefore be cut
up into a precise quantity of elements AFAGAtAD in four dimensions,
distributed in this space and following certain rules defining this sound,
which are summarized by a function with four variables: s(F, G, D, ¢).

G
AF

Plane of
reference (FG)
at moment ¢

p AD will be
the dimension
of the density
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The scale of the density will also be logarithmic with its base between
9 and 3.2 To simplify the explanation we will make an abstraction of this
new coordinate of density. It will always be present in our mind but as an
entity associated with the three-dimensional element AFAGAL.

If time is considered as a procedure of lexicographic ordering, we can,
without loss, assume that the A¢ are equal constants and quite small. We can
thus reason on a two-dimensional space defined by the axes F and G, on
condition that we do not lose sight of the fact that the cloud of grains of
sound exists in the thickness of time At and that the grains of sound are only
artificially flattened on the plane (FG).

Definition of the screen. The screen is the audible area (FG) fixed by a
sufficiently close and homogeneous grid as defined above, the cells of which
may or may not be occupied by grains. In this way any sound and its
history may be described by means of a sufficiently large number of sheets
of paper carrying a given screen S. These sheets are placed in a fixed lexi-
cographic order (see Fig. 1I-8).

Fig. 1I-8 A book of screens equals
the life of a complex sound

The clouds of grains drawn on the screens will differ from one screen
to another by their geographical or topographical position and by their
surface density (see Fig. II-9). Screen 4 contains a small elemental rectan-
gle with a small cluster of density d of mean frequency fand mean amplitude
g- Itis almost a pure sound. Screen B represents a more complex sound with
strong high and low areas but with a weak center. Screen C represents a
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“white”” sound of weak density which may therefore be perceived as a sonic
sheen occupying the whole audible area.

What is important in all the statements made up to now is that nothing
has been said about the topographic fixity of the grains on the screens. All
natural or instrumental sounds are composed of small surface elements filled
with grains which fluctuate around a mean frequency and intensity. The
same holds for the density. This statement is fundamental, and it is very
likely that the failure of electronic music to create new timbres, aside from
the inadequacy of the serial method, is largely due to the fixity of the grains,
which form structures like packets of spaghetti (Fig. 1I-10).

Topographic fixity of the grains is a very particular case, the most
general case being mobility and the statistical distribution of grains around
positions of equilibrium. Consequently in the majority of cases real sounds
can be analyzed as quite small rectangles, AFAG, in which the topographic
positions and the densities vary from one screen to another following more
or less well-defined laws.

Thus the sound of example D at this precise instant is formed by the

collection of rectangles ( fogs), (fags), (f182), (figs), (f581)> (f542)s (foga)s
(fsgz): (.fsg5)= (f?gz)s (f?ga): (f'?g‘i): (f'rgs}, (.fBgSJJ (.ﬁ!g4): (J‘;!gSJS and in each

of the rectangles the grains are disposed in an asymmetric and homogeneous
manner (see Fig. II-11).

CONSTRUCTION OF THE ELEMENTS AFAG OF THE SCREENS

1. By calculation. We shall examine the means of calculating the elements
AFAGAtAD.

How should the grains be distributed in an elemental volume? If we
fix the mean density of the grains (= number of grains per unit of volume)
we have to resolve a problem of probability in a four-dimensional space. A
simpler method would be to consider and then calculate the four coordinates
independently.

For the coordinate ¢ the law of distribution of grains on the axis of time
is:

x=c¢ede or P, =¢ "cAx, (r) (See Appendix I.)

For the coordinates G, F, D the stochastic law will be:

riG=2(1-44 @

2 i A
or Pyom= 57107 (l s (i l)' (See Appendix I.)
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From these formulae we can draw up tables of the frequencies of the
values t, G, F, D (see the analogous problem in Chapter I). These formulae
are in our opinion privileged, for they arise from very simple reasoning,
probably the very simplest; and it is essential to start out with'a minimum
of terms and constraints if we wish to keep to the principle of the tabula rasa
(1st and 3rd rules of Descartes’s Discourse on Method).

Let there be one of these elemental volumes AtADAFAG of the screen
at the moment ¢, This volume has a density D taken from the table derived
from formula (r'). Points on At are defined with a linear density D = ¢
according to the table defined by formula (r). To each point is attributed a
sonic grain of frequency f and intensity g, taken from within the rectangle
AFAG by means of the table of frequencies derived from fprmula (r'). The
correspondences are made graphically or by random successive drawings
from urns composed according to the above tables.

2. Mechanically. a. On the tape recorder: The grains are realized from
sinusoidal sounds whose durations are constant, about 0.04 sec. These
grains must cover the selected elemental area AFAG. Unfolding in time is
accomplished by using the table of durations for a minimum density ¢ = D.
By mixing sections of this tape with itself, we can obtain densities varying
geometrically with ratio 1:2:3 . .. according to the number of tracks that
we use. b. On computers: The grains are realized from wave forms duly
programmed according to Gabor’s signals, for a computer to which an
analogue converter has been coupled. A second program would provide for
the construction of the elemental volumes AtADAFAG from formulae (r)
and (r').

First General Comment

Take the cell AFAGAt. Although occupied in a homogeneous manner
by grains of sound, it varies in time by fluctuating around a mean density
dn. We can apply another argument which is more synthetic, and admit that
these fluctuations will exist in the most general case anyhow (if the sound is
long enough), and will therefore obey the laws of chance. In this case, the
problem is put in the following manner:

Given a prismatic cloud of grains of density d,,, of cross section AFAG
and length 3 At, what is the probability that 4 grains will be found in an
elemental volume AFAGA¢? If the number d,, is small enough, the probabil-
ity is given by Poisson’s formula:

t
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For the definition of each grain we shall again use the methods de-
scribed above.

second General Comment (Vector Space) [8]

We can construct elemental cells AFAG of the screens not only with
points, but with elemental vectors associated with the grains (vector space).
The mean density of 0.04 sec/grain really implies a small vector. The partic-
ular case of the grain occurs when the vector is parallel to the axis of time,
when its projection on the plane (FG) is a point, and when the frequency of
the grain is constant. In general, the frequencies and intensities of the grains
can be variable and the grain a very short glissando (see Fig. I1-12).

G
AF

a6
aAqGq

e
/A\F\__ﬁ

=\

iy g

Fig. lI-12

In a vector space (FG) thus defined, the construction of screens would
perhaps be cumbersome, for it would be necessary to introduce the idea of
speed and the statistical distribution of its values, but the interest in the
undertaking would be enormous. We could imagine screens as the basis of
granular fields which are magnetized or completely neutral (disordered).

In the case of total disorder, we can calculate the probability f(v) of
the existence of a vector v on the plane (FG) using Maxwell’s formula as
applied to two dimensions [11]:

f@) = e,
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Pam) = ZXZ o) - 001}

in which A; = »,/a and

For the mean value v, < 2, < v,,

-

for A; < A < A; (normal Gaussian law) [12]. In any case, whether it is a

matter of a vector space or a scalar space does not modify the arguments
[13].

gmat dA,

Summary of the Screens

1. A screen is described by a set of clouds that are themselves a set of
elemental rectangles AFAG, and which may or may not contain grains of
sound. These conditions exist at the moment ¢ in a slice of time At, as small
as desired.

2. The grains of sound create a density peculiar to each elemental
rectangle AFAG and are generally distributed in the rectangles in an er-
godic manner. (The ergodic principle states that the capricious effect of an
operation that depends on chance is regularized more and more as the
operation is repeated. Here it is understood that a very large succession of
screens is being considered [14].)

3. The conception of the elemental volume AFAGATAD is such that
no simultaneity of grains is generally admitted. Simultaneity occurs when
the density is high enough. Its frequency is bound up with the size of the
density. It is all a question of scale and this paragraph refers above all to
realization. The temporal dimension of the grain (vector) being of the order
of 0.04 sec., no systematic overlapping of two grains (vectors) will be accepted
when the elementary density is, for example, D, = 1.5 grains/sec. And as
the surface distribution of the grains is homogeneous, only chance can
create this overlapping.

4. The limit for a screen may be only one pure sound (sinusoidal),
or even no sound at all (empty screen).

ELEMENTARY OPERATIONS ON SCREENS

Let there be a complex sound. At an instant ¢ of its life during a
thickness At it can be represented by one or several clouds of grains or
vectors on the plane (FG). This is the definition which we gave for the
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screen. The junction of several of these screens in a -given ({rder descFibes
or prescribes the life of this sonic complex. I.t \:vould be }nterestn'lg to envisage
in all its generality the manner of combining ar}d Juxtal'aosmg screens to
describe, and above all to construct, sonic CVOIUFIOIIS, Wh.lCh may bc.c.on-
tinuous or discontinuous, with a view to playing with them ina composition.
To this end we shall borrow the terminology and symb.ollsm of 'modern
algebra, but in an elementary manner and as a form of introduction to a
further development which we shall not undertake at the moment.

Comment: It does not matter whether we place ourselves on the plane
of physical phenomena or of perception. ¥n general, on the plane of per-
ception we consider arithmetically that which is geometrical on the physu'cal
plane. This can be expressed in a more rigorous manner. Perccpt.lon
constitutes an additive group which is almost isomorphic w1.th a physical
excitation constituting a multiplicative group. The *““almost” is necessary to
exorcise approximations.

Grains or vectors on the plane (¥G) constitute a cloud. A screen can be
composed of no grain at all or of several clouds of grains or vectors (see

Fig. I11-13).

J

Screen 1 Screen 2 Screen 3
Fig. II-13

To notate that a grain or vector a belongs to a cloud E, we write ae E
the contrary is written @ ¢ E. If all the grains of a cloud X are grains of
another cloud Y, it is said that X is included in ¥ or that X is a part or
sub-cloud of ¥. This relation is notated X = Y (inclusion).

Consequently we have the following properties:

X < X forany X.
Xc¥Y and Y Z imply X< Z

When X © Yand ¥ < X, the clouds X and Y consist of the same grains;
they are indistinguishable and the relation is written: X = ¥ (.cqu?tion).

A cloud may contain as little as a single grain. A cloud X is said to b.e
empty when it contains no grain g, such that a € X. The empty cloud is
notated .
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ELEMENTARY OPERATIONS

These operations apply equally well to clouds and to screens. We can
therefore use the terms “screen” and “cloud” indiscriminately, with cloud
and grain as “constitutive elements.” 1

The intersection of two screens A and B is the screen of clouds which
belong to both 4 and B. This is notated as 4 N B and read as “ 4 inter B”’
(Fig. II-14). When AN B = @, A and B are said to be disjoint (Fig.
II-15). The union of two screens A and B is the set of clouds which belong
to both 4 and/or B (Fig. I1-16). The complement of a screen A in relation to
a screen E containing A4 is the set of clouds in £ which do not belong to
A. This is notated Cz4A when there is no possible uncertainty about K
(Fig. IT1-17). The difference (A — B) of A and B is the sct of clouds of 4
which do not belong to B. The immediate consequence is 4 — B = 4 —
(4 N B) = C4(4 N B) (Fig. I1-18).

We shall stop this borrowing here; however, it will afford a stronger,
more precise conception on the whole, better adapted for the manipu-
lations and arguments which follow.

DISTINCTIVE CHARACTERISTICS OF THE SCREENS

In our desire to create sonic complexes from the temporary accepted
primary matter of sound, sine waves (or their replacements of the Gabor
sort), and to create sonic complexes as rich as but more extraordinary
than natural sounds (using scientifically controlled evolutions on very
general abstract planes), we have implicitly recognized the importance of
three basic factors which seem to be able to dominate both the theoretical
construction of a sonic process and its sensory effectiveness: 1. the density
of the elementary elements, 2. the topographic situation of events on
the screens, and 3. the order or disorder of events.

At first sight then the density of grains or vectors, their topography,
and their degree of order are the indirect entities and aspects perceived by
our macroscopic ears. It is wonderful that the ear and the mind follow
objective reality and react directly in spite of gross inherent or cultural
imperfections. Measurement has been the foundation of the experimental
sciences. Man voluntarily treats himself as a sensory invalid, and it is for this
reason that he has armed himself, justifiably, with machines that measure
other machines. His ears and eyes do measure entities or physical phen-
omena, but they are transformed as if a distorting filter came between im-
mediate perception and consciousness. About a century ago the logarithmic
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law of sensation was discovered; until now it has not been contradicted.
But as knowledge never stops in its advance, tomorrow’s science will with-
out doubt find not only a greater flexibility and exactitude for this law,
but also the beginnings of an explanation of this distorting filter, which is so
astonishing. ¢

This statistical, but none the less quasi-one-to-one transformation of
excitation into perception has up to now allowed us to argue about physical
entities, such as screens, all the while thinking “perceived events.” A
reciprocity of the same kind between perception and its comprehension
permits us to pass from the screens to the consequent distinctive characteris-
tics. Thus the arguments which we shall pursue apply equally well to pure
concepts and to those resulting from perception or sensory events, and we
may take the attitude of the craftsman or the listener.

We have already remarked on the density and the topography of
grains and cells and we have acknowledged the concepts of order and dis-
order in the homogeneous superficial distribution or grains,

We shall examine closely the concept of order, for it is probably hidden
behind the other two. That is to say, density and topography are rather
palpably simplified embodiments of this fleeting and many-sided concept
of disorder.

When we speak of order or disorder we imply first of all “objects” or
“elements.” Then, and this is already more complex, we define the very
“elements”” which we wish to study and from which we wish to construct
order or disorder, and their scale in relation to ours. Finally we qualify
and endeavor to measure this order or disorder. We can even draw up a list
of all the orders and disorders of these entities on all scales, from all aspects,
for all measurements, even the characteristics of order or disorder of this
very list, and establish anew aspects and measurements.

Take the example of the gases mentioned above. On the molecular
scale (and we could have descended to the atomic level), the absolute values
of the speeds, directions, and distributions in space are of all sorts. We can
distinguish the ““elements” which carry order or disorder. Thus if we could
theoretically isolate the element “directions” and assume that there is an
obligation to follow certain privileged directions and not all directions, we
could impose a certain degree of order which would be independent of the
other elements constituting the concept “gas.” In the same way, given
enough time, the values of the speeds of a single molecule will be distributed
around a mean value and the size of the deviations will follow Gauss’s law.
There we will have a certain order since these values are vastly more
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numerous in the neighborhood of their mean than anywhere else, from in-
finitely small to infinitely large.

Let us take another example, more obvious and equally true. A crowd
of 500,000 persons is assembled in a town square. If we examine the group
displacement of this crowd we can prove that it does not‘budge. H_owcvcr,
each individual moves his limbs, his head, his eyes, and displaces his center
of gravity by a few centimeters in every direction. If the displacen}ents of the
centers of gravity were very large the crowd would break up with yells of
terror because of the multiple collisions between individuals. The statistical
values of these displacements normally lie between very narrow limits which
vary with the density of the crowd, From the point of view of these values as
they affect immobility, the disorder is weak.

Another characteristic of the crowd is the orientation of the faces. If an
orator on a balcony were to speak with a calming effect, 499,000 faces would
look at the balcony and 998,000 ears would listen to the honeyed words. A
thousand or so faces and 2000 ears would be distracted for various reasons:
fatigue, annoyance, imagination, sexuality, contempt, theft, etc. We could
confirm, along with the mass media, without any possible dispute, that
crowd and speaker were in complete accord, that 500,001 people, in fact,
were unanimous. The degree of order that the speaker was after would attain
a maximum for a few minutes at least, and if unanimity were expressed
equally strongly at the conclusion of the meeting, the orator could be per-
suaded that the ideas were as well ordered in the heads of the crowd as in his
own.

We can establish from these two extreme examples that the concept of
order and disorder is basic to a very large number of phenomena, and that
even the definition of a phenomenon or an object is very often attributable to
this concept. On the other hand, we can establish that this concept is
founded on precise and distinct groups of elements; that the scale is impor-
tant in the choice of elements; and finally, that the concept of order or dis-
order implies the relationship between effective values over all possible
values that the elements of a group can possess. This introduces the concept
of probability in the quantitative estimate of order or disorder.

We shall call the number of distinct elements in a group its variety. We
shall call the degree of order or disorder definable in a group of elements its
entropy. Entropy is linked with the concept of variety, and for that very
reason, it is linked to the probability of an element in the group. These
concepts are those of the theory of communications, which itself borrows
from the second law of thermodynamics (Boltzmann’s theorem H) [15].
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Variety is expressed as a pure number or as its logarithm to the base 2.
Thus human sex has two elements, male and female, and its variety is 2,
or 1 bit: 1 bit = log, 2.

Let there be a group of probabilities (a group of real numbers p,
positive or zero, whose sum is 1). The entropy H of this group is defined as

H=-K3plogp.

If the logarithmic base is 2, the entropy is expressed in bits. Thus if we
have a sequence of heads and tails, the probability of each is 4, and the
entropy of this sequence, i.e., its uncertainty at each throw, will be 1 bit, If
both sides of the coin were heads, the uncertainty would bg removed and the
entropy H would be zero.

Let us suppose that the advent of a head or a tail is not controlled by
tossing the coin, but by a fixed, univocal law, e.g., heads at each even toss
and tails at each odd toss. Uncertainty or disorder is always absent and the
entropy is zero. If the law becomes very complex the appearance of heads or
tails will seem to a human observer to be ruled by the law of chance, and
disorder and uncertainty will be reestablished. What the observer could do
would be to count the appearances of heads and tails, add up their respective
frequencies, deduce their probabilities, and then calculate the entropy in
bits. If the frequency of heads is equal to that of tails the uncertainty will be
maximum and equal to 1 bit.

This typical example shows roughly the passage from order to disorder
and the means of calibrating this disorder so that it may be compared with
other states of disorder. It also shows the importance of scale. The intelli-
gence of the observer would assimilate a deterministic complexity up to a
certain limit. Beyond that, in his eyes, the complexity would swing over into
unforeseeability and would become chance or disorder; and the visible (or
macroscopic would slide into the invisible (or microscopic). Other methods
and points of view would be necessary to observe and control the pheno-
mena.

At the beginning of this chapter we admitted that the mind and especi-
ally the ear were very sensitive to the order or disorder of phenomena. The
laws of perception and judgment are probably in a geometrical or logarith-
mic relation to the laws of excitation. We do not know much about this, and
we shall again confine ourselves to examining general entities and to tracing
an overall orientation of the poetic processes of a very general kind of music,
without giving figures, moduli, or determinisms. We are still optimistic
enough to think that the interdependent experiment and action of abstract
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hypotheses can cut biologically into the living conflict between ignorance
and reality(if there is any reality).

Study of Ataxy (order or disorder) on the Plane of a
Cloud of Grains or Vectors

Axis of time: The degree of ataxy, or the entropy, is a function of the
simultaneity of the grains and of the distinct intervals of time between the
emission of each grain. If the variety of the durations of the emissions is weak,
the entropy is also weak. If, for example, in a given At each grain is emitted
at regular intervals of time, the temporal variety will be 1 and the entropy
zero. The cloud will have zero ataxy and will be completely ordered. Con-
versely, if in a fairly long succession of At the grains are emitted according
to the law P, = 8¢~ %% dx, the degree of ataxy will be much larger. The limit
of entropy is infinity, for we can imagine all possible values of time intervals
with an equal probability. Thus, if the variety is n — co, the probability
for each time interval is p; = 1/n, and the entropy is

H= —K?3) pilogpi
=0
i Lahid 1
H = —K;];log; = —Kn;log; = —Klog;= Klogn

for n — o0, H — o0.

This is less true in practice, for a A will never offer a very great variety
of durations and its entropy will be weak. Furthermore a sonic composition
will rarely have more than 100,000 At’s, so that A < log 100,000 and
H < 16.6 bits.

Axis of frequencies (melodic) : The same arguments are valid here but with
greater restriction on the variety of melodic intervals and on the absolute
frequencies because of the limits of the audible area.

Entropy is zero when the variety of frequencies of grains is 1, i.e., when
the cloud contains only one pure sound.

Axis of intensity and density: The above observations are valid. There-
fore, if at the limit, the entropies following the three axes of an element
AFAGAtAD are zero, this element will only contain one pure sound of
constant intensity emitted at regular intervals.

In conclusion, a cloud may contain just one single pure sound emitted
at regular intervals of time (see Fig. II-19), in which case its mean entropy
(arithmetic mean of the three entropies) would be zero. It may contain
chaotically distributed grains, with maximum ataxy and maximum mean
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entropy (theoretically c0). Between these two limits the grains may be
distributed in an infinite number of ways with mean entropies between 0
and the maximum and able to produce both the Marseillaise and a raw,
dodecaphonic series. '

Fig. 1I-19 b

A single grain emitted at regular intervals of time

Parentheses

GENERAL OBSERVATIONS ON ATAXY

Taking this last possibility as a basis, we shall examine the very general
formal processes in all realms of thought, in all physical and psychic realities.

To this end we shall imagine a “Primary Thing,” malleable at will;
capable of deforming instantaneously, progressively, or step-by-step; extend-
ible or retractable; unique or plural; as simple as an electron (!) or as com-
plex as the universe (as compared to man, that is).

It will have a given mean entropy. At a defined time we will cause it to
undergo a transformation. From the point of view of ataxy this transforma-
tion can have one of three effects:

1. The degree of complexity (variety) does not change; the transforma-
tion is neutral; and the overall entropy does not change.

2. The degree of complexity increases and so does the entropy.

3. The transformation is a simplifying one, and the entropy dimin-
ishes. ;

Thus the neutral transformation may act on and transform: perfect
disorder into perfect disorder (fluctuations), partial disorder into partial
disorder, and perfect order into perfect order.

Multiplicative transformation transforms: perfect disorder into perfect
disorder, partial disorder into greater disorder, and perfect order into partial
disorder.
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And simplifying transformation transforms: perfect disorder into partial
disorder, partial order into greater order, and partial order into perfect
order. Fig. I11-20 shows these transformations in the form of a kinematic

diagram.

Perfect |Degree of order
disorder

Max.
entropy

Partial Entropy

disorder \ <« max.

Perfect Entropy 0

order ¥
Fig. 11-20 Time

STUDY OF ATAXY AT THE LEVEL OF SCREENS (SET OF CLOUDS)

From the above discussion, a screen which is composed of a set of
cells AFAG associated with densities during a slice of time Af, may be
dissociated according to the two characters of the grains, frequency and
amplitude, and affected by a mean entropy. Thus we can classify screens
according to the criterion of ataxy by means of two parameters of disorder:
the variety of the frequencies and the variety of the intensities. We shall
make an abstraction of the temporal distribution of the grains in A¢ and of
the density, which is implicitly bound up with the varieties of the two
fundamental sizes of the grain. In symbolic form:

Perfect disorder = oo
Partial disorder = n or m
Partial order =anllor . 'p
Perfect order = 0.

From the point of view of ataxy a screen is formulated by a pair of
entropy values ascribed to a pair of frequencies and intensities of its grains.
Thus the pair (n, ) means a screen whose frequencies have quite a small
entropy (partial order or disorder) and whose intensities have maximum
entropy (more or less perfect disorder).
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CONSTRUCTION OF THE SCREENS

We shall quickly survey some of the screens in the entropy table in
Fig. I1-21.

c::::::::r d?;:j:r J:T;th Symbol Description Diagram Dfa;gram
Eo R Gl 8
FiGE 0, o0 | Unigue screen | momn
Infinite number
F G o0, n of screens SR A R A _/V/
F G w, 0 Unique screen
Infinite number ()
G| F n, o of screens
Unique screen,
G F 0, pure sounds
Infinite number v
F G n, m of screens 0 ~
Infinite number
F G n 0 of screens N T b
Infinite number ’ i
G| F 0,n of screens &
Unique screen, A .
il 0,0 pure sound J

Fig. 11-21. Screen Entropy Table

SCREEN (00, o0)

Let there be a very large number of grains distributed at random over
the whole range of the audible area and lasting an interval of time equal to
At. Let there also be a grid fine enough so that the average density will not
be more than 30 grains per cell. The distribution law is then given by
Poisson’s formula

(4n)* 4

iy BT _T' £ By

where 4, is the mean density and P, the probability that there will be &
grains in a cell. If 4, becomes greater than about 30, the distribution law
will become normal.

Fig. I1-22 is an example of a Poisson distribution for a mean density
d,, = 0.6 grains/cell in a grid of 196 cells for a screen (00, 00).

Thus we may construct the (o0, 00) screens by hand, according to the
distributions for the rows and columns, or with suitable computer programs.
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Fig. 11-22 F

For a very high mean density the screens in which disorder is perfect
(maximum) will give a very rich sound, almost a white sound, which will
never be identical throughout time. If the calculation is done by hand we can
construct a large number of (o0, c0) screens from the first (0o, o) screen in
order to avoid work and numerical calculation for each separate screen. To
this end we permute the cells by column and row (see Fig. 11-23).

PR TR F b a F

Fig. 11-23. Example of Permutation by Columns

Discussion. It is obvious that for a high mean density, the greater the
number of cells, the more the distribution of grains in one region of the
screen tends to regularize (ergodism) and the weaker are the fluctuations
from one cell or cloud to another. But the absolute limits of the density in
the cells in the audible area will be a function of the technical means
available: slide rules, tables, calculating machines, computers, ruled paper,
orchestral instruments, tape recorders, scissors, programmed impulses of
pure sounds, automatic splicing devices, programmed recordings, analogue
converters, etc.

If each cell is considered as a symbol defined by the number of grains ,
the entropy of the screen (for a given fineness of grid) will naturally be
affected by the mean density of the grains per cell and will grow at the same
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time. Tt is here that a whole series of statistical experiments will have to
circumscribe the perceptible limits of ataxy for these screens (0, c0) and
even express the color nuances of white sound. It is very possible that the
car classifies in the same file a great number of screens whose entropies vary
tremendously. There would result from this an impoverishment and a
simplification of the communication: physical information —» perception,
but at least there will be the advantage that the work involved in construct-
ing screens will be considerably reduced.

ALL SCREENS

Starting from a few screens and applying the elementary operations we
can construct all the screens of the entropy table. See Fig. 11-24 for a few
examples. In practice, frequency and intensity filters imitate these elemen-
tary operations perfectly.

BZR==

1 BE= Z Z R
I s '

1

7 1112 |12 E =

(00 00) (oo ™) (n @)

il U Iz =] =[MiZ::

(n Tﬂ_)_ (n“ m’) (00 M)

I

i lNZRlll

(n ) (00 M) (n m)

Fig. 11-24
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LINKING THE SCREENS

Up to now we have admitted that any sound or music could be de-
scribed by a number of screens arranged in the lexicographic order of the
pages of a book. If we represent each screen by a specific symbol (one-to-one
coding), the sound or the music can be translated by a succession of symbols
called a protocol:

abgkab---bg---

each letter identifying screens and moments ¢ for isochronous At’s.

Without seeking the causes of a particular succession of screens, i.e.,
without entering into either the physical structure of the sound or the logical
structure of the composition, we can disengage certain modes of succession
and species of protocols [16]. We shall quickly review the elementary
definitions.

Any matter or its unique symbol is called a term. Two successive terms
cause a transition to materialize. The second term is called the transform and
the change effected is represented by term 4 — term B, or 4 — B.

A transformation is a collection of transitions. The following example is
drawn from the above protocol:

labgfc
bihe kg

another transformation with musical notes:

g
lJ g o
8 W 0

A transformation is said to be closed when the collection of transforms
contains only elements belonging to the collection of terms, for example:

labc--—z
bl divnedndl g

the alphabet,
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musical notes, q

C Dy 'DUELEF Gy G A BB
lDGbGC F B A Dy Ep E By

musical sounds,

1. Cloud of sound-points,
e.g., pizzicati '

2. Network of parallel
glissandi in one
direction

3. Network of parallel
glissandi in two
directions.

an infinity of terms,

128 ¢ {56
167410012

A transformation is univocal or single-valued (mapping) when each term
has a single transform, for example:

l T I
g bile d e {
The following are examples of transformations that are not univocal:
1 a b ¢
a.
bye d mymp
— 54—

. / IppPP >
bl [ Bl f

IS . |

b=l
.

¢. timbre change of a group of values

clarinets oboes strings timpani brass

Timbres timpani, timpani, brass oboes strings,
strings  bassoon oboes
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and d. concrete music characteriology [4, 5]
nil vibrated trembled cyclical irregular
trembled nil or

vibrated or
cyclical

cyclical or irregular nil or
trembled irregular

“Manner”

A transformation is a one-to-one mapping when each term has a single
transform and when each transform is derived from a single term, for
example:

la b ¢ d

filag d ¢t
MATRICAL REPRESENTATION

A transformation:

——
=1 I~
b o
© =

can be represented by a table as follows:
J: | PN
g e ORI
Bt BB ) or
¢c | 0 4+ 4+

This table is a matrix of the transitions of the collection of terms to a
collection of transforms.

PRODUCT

Let there be two transformations T and U:

7 i s A avhted
g% and [k
IR R I

In certain cases we can apply to a term n of T"a transformation 7, then
a transformation U. This is written: U[7(n)], and is the product of the two
transformations 7" and U, on condition that the transforms of T are terms
of U. Thus, first T: a— b, then U: b—¢, which is summarized as
V=UT:a—vc.
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To calculate the product applied to all the terms of 7" we shall use the
following matrical representation:

Lbwg b8 d $iler b e d
& 10 9 21" e 10ag 0
g S W A ¢ A U100 0 1
Pl 7 G0 B RO C I s i IS
d 101 0.0 1 T S A

the total transformation V equals the product of the two matrices 7" and U
in the order U,T.

U T v
0. 0.0 o1 y0. 0 1 6] {0 @ 0 o
gl ol ale il ite e 0" e
I L Ll
i atoal e e’ ol bl )i 1 e

KINEMATIC DIAGRAM

The kinematic or transition diagram is a graphical expression of
transformation. To draw it each term is connected to its transform by an
arrow pointed at the transform. The representative point of a kinematic dia-
gram is an imaginary point which moves in jumps from term to term
following the arrows of the diagram; for an example see Fig. 11-25.

7 S vl ) W R A S
lDDIANANN

|
MR

Fig. 11-25 L

A transformation is really a mechanism and theoretically all the
mechanisms of the physical or biological universes can be represented by
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transformations under five conditions of correspondence:

1. Each state of the mechanism (continuity is broken down into discrete
states as close together as is desired) is in a one-to-one correspondence with
a term of the transformation.

2. Each sequence of states crossed by the mechanism by reason of its
internal structure corresponds to an uninterrupted sequence of the terms of
the transformation,

3. If the mechanism reaches a state and remains there (absorbing or
stationary state), the term which corresponds to this state has no transform.

4. If the states of a mechanism reproduce themselves in the same man-
ner without end, the transformation has a kinematic diagram in closed
circuit.

5. A halt of the mechanism and its start from another state is repre-
sented in the diagram by a displacement of the representative point, which
is not due to an arrow but to an arbitrary action on the paper.

The mechanism is determined when the corresponding transformation
is univocal and closed. The mechanism is not determined when the corre-
sponding transformation is many-valued. In this case the transformation is
said to be stochastic. In a stochastic mechanism the numbers 0 and 1 in the
transformation matrix must be replaced by relative frequencies. These are
the alternative probabilities of various transformations. The determined
mechanism is a particular case of the stochastic mechanism, in which the
probabilities of transition are 0 and 1.

Example: All the harmonic or polyphonic rules of classical music could
be represented by mechanisms. The fugue is one of the most accomplished
and determined mechanisms. One could even generalize and say that the
avant-garde composer is not content with following the mechanisms of his
age but proposes new ones, for both detail and general form.

If these probabilities are constant over a long period of time, and if they
are independent of the states of origin, the stochastic sequence is called,
more particularly, a Markov chain.

Let there be two screens A and B and a protocol of 50 transitions:

ABABBBABAABABABABBBBABAABABBAABABBABAAABABBA
ABBABBA.

The real frequencies of the transitions are:

A—> B 17 times B—>A 17 times
A—>A 6 times B— B 10 times

23 times 27 times
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The matrix of the frequencies of real transitions is:

oy R
41 6 17
B |17 10

The matrix of transition probabilities (relative frequencies) (MTP) is:

{|4 B
A]026 063
B |0.74 037

1.00 1.00

If the preceding matrix were:

the unpredictability of the succession of 4 and B would be maximum and so
would the entropy. Inversely, the constraint would be zero.
If the preceding matrix were:

Giiakid
Alo 1
B|1 0

the transformation would be absolutely determined and the entropy of the
sequence zero. The constraint would be maximum.

It may be that the symbols of a protocol depend in a certain way on the
preceding terms, e.g., digram, trigram, etc., protocols. In this case, the
matrix of transition probabilities (MTP) may be made independent by
using an appropriate coding.

We can have (MTP) with a, b, and ¢ as parameters, e.g.:

| | A B i J jo A ! \A B
a. A |02 063 b,. 4’| 05058 UL e
B | 0.74 037 B |05 05 Blo 1
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We can couple two or several (MTP) of different symbols on condition
that we introduce a determined or stochastic transformation between the
various parameters. Thus a protocol of timbres may be coupled with a
protocol of intensity and a protocol of frequencies, etc., and each of the
protocols may be linked in pairs with all the others. Isolated or coupled
mechanisms can have one or several stationary or absorbing states towards
which they tend in a manner which may or may not be unique. The sto-
chastic mechanism may be a completely closed one on the same grounds as
a determined mechanism.

If a Matrix of Transition Probabilities (MTP) is regular, that is, if all
the entries of some power of this matrix are positive, the (MTP) has a unique
Jfixed probability vector ¢; and in the long run, the sequence of increasing
powers of (MTP) approaches the matrix T, whose rows are each the fixed
point t. This T matrix is called the stationary distribution of the Markov chain
represented by the stochastic (MTP) matrix. In the next chapter we shall
see two methods of calculating this stationary distribution, or state of sta-
bility, from one (MTP) and the definition of a mean entropy. It is with the
aid of this mean entropy that we shall be able to define and then compare
the degrees of ataxy of a particular mechanism that we have applied to a
set of screens.

In this way all that has been said about the ataxy of grains and
clouds may be generalized and transposed to the sets (books) of screens. A
fundamental criterion of the evolution of a piece of music can be shaped by
the transformations of ataxy over time.

For example, it is very common in musical composition not to unleash
at one go all the riches of which one is capable but to reserve them and
introduce them little by little. It is also possible to imagine a piece of music
which would give, at one stroke in the beginning, all the variety available
and then break it into its separate elements in time.

The elementary evolutions of ataxy are diagrammed in Fig. II-26.
Diagram F can be given in the form of a protocol. Ataxy can therefore be
put in a matrical form with parameters, etc., and all the logical rules of
transformation which we have allowed so far are applicable to the (MTP)
of entropy.

How is this ataxy perceived ? In many ways. If the grains of a given
surface of a screen are distributed in a homogeneous manner, increasing the
density will increase the richness, unpredictability, and entropy. In the
same ergodic distribution of grains, if certain symmetries in the disposition
of the grains appear and are discernible, a constraint is felt, and consequently
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a diminution of the entropy. If melodic or harmonic liaisons are effected
and perceived in the same distribution, unpredictability and entropy are
both diminished.

Rate of ataxy

Time

ot
| R o e

Fig. 11-26

A. The evolution is nil. B. The rate of disorder and the richness
increase. C. Ataxy decreases. D. Ataxy increases and then
decreases. E. Ataxy decreases and then increases. F. The
evolution of the ataxy is very complex, but it may be analyzed
from the first three diagrams.

Thus after the first unfolding of a series of twelve sounds of the tem-
pered scale, the unpredictability has fallen to zero, the constraint is maxi-
mum, the choice is nil, and the entropy is zero. Richness and hence interest
are displaced to other fields, such as harmonies, timbres, and durations, and
many other compositional wiles are aimed at reviving entropy. In fact sonic
discourse is nothing but a perpetual fluctuation of entropy in all its forms
[17].

However, human sensitivity does not necessarily follow the variation
in entropy even if it is logarithmic to an appropriate base. It is rather a
succession or a protocol of strains and relaxations of every degree that often
excites the listener in a direction contrary to that of entropy. Thus Ravel’s
Bolero, in which the only variation is in the dynamics, has a virtually zero
entropy after the third or fourth repetition of the fundamental idea. How-
ever, the interest, or rather the psychological agitation, grows with time
through the very fact of this immobility and banality.

All incantatory manifestations aim at an effect of maximum tension
with minimum entropy. The inverse is equally true, and seen from a certain
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angle, white noise with its maximum entropy is soon tiresome. It would
seem that there is no correspondence aesthetics «<» entropy. These two
entities are linked in quite an independent manner at each occasion. This
statement still leaves some respite for the free will of the composer even if
this free will is buried under the rubbish of culture and civilization and is
only a shadow, at the least a tendency, a simple stochasm.

The great obstacle to a too hasty generalization is chiefly one of logical
order; for an object is only an object as a function of its definition, and there
is, especially in art, a near-infinity of definitions and hence a near-infinity
of entropies, for the notion of entropy is an epiphenomenon of the definition.
Which of these is valid ? The ear, the eye, and the brain unravel sometimes
inextricable situations with what is called intuition, taste, and intelligence.
Two definitions with two different entropies can be perceived as identical,
but it is also true that the set of definitions of an object has its own degree
of disorder. We are not concerned here with investigating such a difficult,
complex, and unexplored situation, but simply with looking over the
possibilities that connected realms of contemporary thought promise, with a
view to action.

To conclude briefly, since the applications which follow are more elo-
quent than explanatory texts, we shall accept that a collection or book of
screens can be expressed by matrices of transition probabilities having
parameters. They are affected by a degree of ataxy or entropy which is
calculable under certain conditions. However, in order to render the
analysis and then the synthesis of a sonic work within reach of understanding
and the slide rule, we shall establish three criteria for a screen:

l. TOPOGRAPHIC CRITERION

The position of the cells AFAG on the audible area is qualitatively
important, and an enumeration of their possible combinations is capable of
creating a group of well defined terms to which we can apply the concept
of entropy and its calculation,

2. DENSITY CRITERION

The superficial density of the grains of a cell AFAG also constitutes a
quality which is immediately perceptible, and we could equally well define
terms to which the concept and calculation of entropy would be applicable.

3. CRITERION OF PURE ATAXY (defined in relation to the grains of a
screen)

A cell has three variables: mean frequency, mean amplitude, and mean
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density of the grains. For a screen we can therefore establish three indepen-
dent or connected protocols, then three matrices of transition probabilities
which may or may not be coupled. Each of the matrices will have its entropy
and the three coupled matrices will have a mean entropy. In the procession
of sound we can establish several series of three matrices and hence several
series of mean entropies, their variations constituting the criterion of ataxy.

The first two criteria, which are general and on the scale of screens or
cells, will not concern us in what follows. But the third, more conventional
criterion will be taken up in detail in the next chapter.

Chapter llI

Markovian Stochastic Music—
Applications

In this chapter we will discuss two musical applications: Analogique A, for
string orchestra, and Analogique B, for sinusoidal sounds, both composed in
1958-59.

We shall confine ourselves to a simple case in which each of the com-
ponents G, F, D of the screen take only two values, following matrices of
transition probability which will be coupled by means of parameters. In
addition, the choice of probabilities in the matrices will be made in such a
way that we shall have only the regular case, conforming to the chain of
events theory as it has been defined in the work of Maurice Fréchet [14].

It is obvious that richer and more complex stochastic mechanisms are
highly interesting to construct and to put in work, but in view of the con-
siderable volume of calculations which they necessitate it would be useless
to undertake them by hand, but very desirable to program them for the
computer.

Nevertheless, despite the structural simplicity of what follows, the
stochastic mechanism which will emerge will be a model, a standard sub-
jacent to any others that are far more complex, and will serve to catalyze
further studies of greater elaboration. For although we confine ourselves
here to the study of screens as they have been defined in this study (sets of
clementary grains), it goes without saying that nothing prevents the gen-
eralization of this method of structuralization (composition) for definitions
of sonic entities of more than three dimensions. Thus, let us nolonger suppose
screens, but criteria of definitions of a sonic entity, such that for the timbre,
degree of order, density, variation, and even the criteria of more or less

79




80 Formalized Music Markovian Stochastic Music—Applications 81
complex elementary structures (e.g., melodic and temporal structures of
groups of sounds, and instrumental, spatial, and kinematic structures) the
same stochastic scheme is adaptable. It is enough to define the variations
well and to be able to classify them even in a rough manner.,

The sonic result thus obtained is not guaranteed a priori by calculation.
Intuition and experience must always play their part in guiding, deciding,
and testing,

ANALYSIS
(definition of the scheme of a mechanism)

We shall define the scheme of a mechanism as the “analogue” of a
stochastic process. It will serve for the production of sonic entities and for
their transformations over time. These sonic entities will have screens which
will show the following characteristics freely chosen:

1. They will permit two distinct combinations of frequency regions
Jfo and f; (see Fig. I11-2).

Fa i IV “F Half axis
L __J of frequencies
e i in semitones
Audible frequencies
Half axis
F1 = ¥ of frequencies
R o in semitones

Audible frequencies
Fig. llI-2

Syrmos, written in 1959, is built on stochastic transformations of
eight basic textures : parallel horizontal bowed notes, parallel
ascending bowed glissandi, parallel descending bowed glissandi,
crossed (ascending and descending) parallel bowed notes,
pizzicato clouds, atmospheres made up of col legno struck notes
with short col legno glissandi, geometric configurations of
convergent or divergent glissandi, and glissando configurations
treated as undevelopable ruled surfaces. The mathematical struc-

ture of this work is the same as that of Analogique A and
Fig. llI-1. Syrmos for 18 strings A Analogique B.
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2. They will permit two distinct combinations of intensity regions

(see Fig. I1I-3).

ﬁ (Phones) ‘qf (Phones)
8 g
. g 61
£ (=
° o
! £ £
] Jsis| 8
@ o
Fig. I1I-3 ¢ I

3. They will permit two distinct combinations of density regions
(see Fig. I11-4).

(Terts* or sounds/sec) p (Terts* or sounds/sec) D

d, d,

*Ternary logarithms

Fig. -4

4. Each of these three variables will present a protocol which may be
summarized by two matrices of transition probabilities (MTP).

The letters (p) and (o) constitute the parameters of the (MTP).
MTPF (of frequencies)

S v
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MTPG (of intensities)

Y| & & v 8o &1

2o |02 08 % | 0.85 0.4
m o) 8

g |08 02 g | 015 0.6

MTPD (of densities)

v | b 4 O

dy | 0.2 0.8 dy | 0.85 04
W ()

d | 0.8 0.2 d, | 0.15 0.6

5. The transformations of the variables are indeterminate at the
interior of each (MTP) (digram processes), but on the other hand their
(MTP) will be connected by means of a determined coupling of parameters.
The coupling is given by the following transformations:

(eo) lfofl dy dy & & & & Jo fi dy 4,
A e lE SRR S S et e SR L S

By these rules we have described the structure of a mechanism. It is
thus constituted by three pairs of (MTP): (MTPF), (MTPG), (MTPD),
and by the group (¢,) of the six couplings of these (MTP).

Significance of the coupling. Let f;, be the state of the frequencies of the
screen at an instant ¢ of the sonic evolution of the mechanism during a slice
of time At. Let g, and d; be the values of the other variables of the screen
at the moment ¢. At the next moment, ¢ + A¢, the term £, is bound to change,
for it obeys one of the two (MTPF), («) or (B). The choice of («) or (B) is
conditioned by the values g, and 4, of the moment ¢, conforming to the
transformation of the coupling. Thus g; proposes the parameter («) and d;
the parameter () simultaneously. In other words the term f;, must either
remain f; or yield its place to f; according to mechanism («) or mechanism
(B). Imagine the term f, standing before two urns («) and (B), each con-
taining two colors of balls, red for f; and blue for f;, in the following
proportions:

Urn («) Urn (B)
red balls (f;), 0.2 red balls (f;), 0.85
blue balls (f;), 0.8 blue balls ( f;), 0.15

The choice is free and the term f;, can take its successor from either urn (c)
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or urn (B) with a probability equal to 4 (total probabilities).

Once the urn has been chosen, the choice of a blue or a red ball will
have a probability equal to the proportion of colors in the chosen urn.
Applying the law of compound probabilities, the probability that f; from
moment { will remain f; at the moment ¢ + Atis (0.20 + 0.85)/2 = 0.525,
and the probability that it will change to f; is (0.80 + 0.15)/2 = 0.475.

The five characteristics of the composition of the screens have estab-
lished a stochastic mechanism. Thus in each of the slices At of the sonic
evolution of the created mechanism, the three variables f;, g, d; follow a
round of unforeseeable combinations, always changing according to the
three (MTP) and the coupling which connects terms and parameters.

We have established this mechanism without taking nto consideration
any of the screen criteria. That is to say, we have implied a topographic
distribution of grain regions at the time of the choice of f;, f; and g, g;, but
without specifying it. The same is true for the density distribution. We shall
give two examples of very different realizations in which these two criteria
will be effective. But before setting them out we shall pursue further the
study of the criterion of ataxy.

We shall neglect the entropies of the three variables at the grain level,
for what matters is the macroscopic mechanism at the screen level. The
fundamental questions posed by these mechanisms are, “Where does the
transformation summarized by an (MTP) go? What is its destiny ?”

Let us consider the (MTP):

Wil i bt ¢
X|02 08
Y |08 02

and suppose one hundred mechanisms identified by the law of this single
(MTP). We shall allow them all to set out from X and evolve freely. The
preceding question then becomes, “Is there a general tendency for the states
of the hundred mechanisms, and if so, what is it?” (See Appendix I1.)

After the first stage the 100X will be transformed into 0.2 (100X) —
20X, and 0.8 (100X) — 80Y. At the third stage 0.2 of the X’s and 0.8 of the
Y’s will become X’s. Conversely 0.8 of the X’s will become ¥’s and 0.2 of
the ¥’s will remain ¥’s. This general argument is true for all stages and can
be written:

X' =02X + 0.8Y
Y= 08X + 0.2Y.
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If this is to be applied to the 100 mechanisms X as above, we shall have:

Mechanisms Mechanisms

Stage X Y
0 100 0
1 20 80
2 68 32
3 39 61
4 57 43
5 46 54
6 52 48
7 49 51
8 50 50
9

50 50

We notice oscillations that show a general tendency towards a station-
ary state at the 8th stage. We may conclude, then, that of the 100 mecha-
nisms that leave from X, the 8th stage will in all probability send 50 to X
and 50 to Y. The same stationary probability distribution of the Markov
chain, or the fixed probability vector, is calculated in the following manner:

At equilibrium the two probability values X and ¥ remain unchanged
and the preceding system becomes

X =0.2X + 0.8Y
Y =08Y + 0.2Y

or

0= -0.8X + 0.8Y
0= +0.8X — 0.87.

Since the number of mechanisms is constant, in this case 100 (or 1), one of
the two equations may be replaced at the stationary distribution by
1 = X + Y. The system then becomes

0 = 0.8X — 0.8Y
1=X+7Y

and the stationary probability values X, ¥ are X = 0.50 and ¥ = 0.50.
The same method can be applied to the (MTP) (o), which will give us
stationary probabilities X = 0.73 and ¥ = 0.27.
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Another method, particularly interesting in the case of an (MTP) with
many terms, which forces us to resolve a large system of linear equations in
order to find the stationary probabilities, is that which makes use of matrix
calculus. '

Thus the first stage may be considered as the matrix product of the

(MTP) with the unicolumn matrix

0
X: |02 0.8 100 20
Y: }0.8 02| | o ’=‘80’°
The second stage will be
0.2 0.8 20| | 4+ 64 68
‘0.8 02| 80]—‘164- 15‘3'32”
and the nth stage
02 08" 100
’0.8 02| “|ol

Now that we know how to calculate the stationary probabilities of a
Markov chain we can easily calculate its mean entropy. The definition of
the entropy of a system is

H = -3 plogp,.

The calculation of the entropy of an (MTP) is made first by columns
(24 = 1), the p, being the probability of the transition for the (MTP);
then this result is weighted with the corresponding stationary probabilities,
Thus for the (MTP)(0):

TR S
X |085 04
Y |015 06

The entropy of the states of X will be —0.85 log 0.85 — 0.15 log 0.15 =
0.611 bits; the entropy of the states of ¥, —0.4 log 0.4 — 0.6 log 0.6 =
0.970 bits; the stationary probability of X = 0.73; the stationary proba-
bility of ¥ = 0.27; the mean entropy at the stationary stage is

Ho = 0.611(0.73) + 0.970(0.27) = 0.707 bits;
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and the mean entropy of the (MTP)(p) at the stationary stage is
Hp = 0.722 bits.

The two entropies do not differ by much, and this is to be expected,
for if we look at the respective (MTP) we observe that the great contrasts
of probabilities inside the matrix (p) are compensated by an external equality
of stationary probabilities, and conversely in the (MTP)(c) the interior
quasi-equality, 0.4 and 0.6, succeeds in counteracting the interior contrast,
0.85 and 0.15, and the exterior contrast, 0.73 and 0.27.

At this level we may modify the (MTP) of the three variables f, g;, 4,
in such a way as to obtain a new pair of entropies. As this operation is
repeatable we can form a protocol of pairs of entropies and therefore an
(MTP) of pairs of entropies. These speculations and investigations are no
doubt interesting, but we shall confine ourselves to the first calculation made
above and we shall pursue the investigation on an even more general plane.

MARKOV CHAIN EXTENDED SIMULTANEOUSLY FOR f;, &, d;

On p. 83 we analyzed the mechanism of transformation of f; to f; or f;
when the probabilities of the two variables g; and 4, are given. We can apply
the same arguments for each of the three variables f;, g;, d; when the two
others are given.

Example for g;. Let there be a screen at the moment ¢ whose variables
have the values ( fy, g;, 4;). At the moment ¢ + At the value of g, will be
transformed into g, or g,. From f; comes the parameter (y), and from 4,
comes the parameter (e).

With (MTP)(y) the probability that g; will remain g; is 0.2. With
(MTP)(e) the probability that g, will remain g, is 0.6. Applying the rules
of compound probabilities and/or probabilities of mutually exclusive events
ason p. 83, we find that the probability that g, will remain g, at the moment
¢ + Atunder the simultaneous effects of f and d, is equal to (0.2 + 0.6)/2 =
0.4. The same holds for the calculation of the transformation from g, into g,
and for the transformations of d,.

We shall now attempt to emerge from this jungle of probability com-
binations, which is impossible to manage, and look for a more general
viewpoint, if it exists.

In general, each screen is constituted by a triad of specific values of
the variables F, GG, D so that we can enumerate the different screens emer-
ging from the mechanism that we are given (see Fig. ITI-5). The possible
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combinations are: (fogodo), (fo&odh)s (fog1do)s (fog141), (fr8odo)s (f180d1),
(f18140); (f1814,); i.e., eight different screens, which, with their protocols,
will make up the sonic evolution. At each moment ¢ of the composition we
shall encounter one of these eight screens and no others.

What are the rules for the passage from one combination to another?
Can one construct a matrix of transition probabilities for these eight
screens ?

Let there be a screen (f;,g,4,) at the moment £. Can one calculate the
probability that at the moment ¢ + At this screen will be transformed into
(f1814,) ? The above operations have enabled us to calculate the probability
that f; will be transformed into f; under the influence of g, and d, and that
g1 will remain g, under the influence of f; and 4,. These operations are

schematized in Fig. ITI-6, and the probability that screen (fog1d,) will be
transformed into ( f; g,d,) is 0.114.

Fig. 1I-5

Screen at the moment ¢ : fo g1 dy

Parameters derived from the coupling % i #
transformations : B Y A
Screen at the moment ¢ + At: fi g1 dp
Values of probabilities taken from the (MTP) 0.80 06 04
corresponding to the coupling parameters : 0.15 02 08
Compound probabilities : 0475 04 0686

Compound probabilities for independent events: 0.475 - 0.4 - 0.6 = 0.114

Fig. IlI-6

We can therefore extend the calculation to the eight screens and construct
the matrix of transition probabilities. It will be square and will have eight
rows and eight columns.
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MTPZ
A B e D E F G H
l (fogodo) (fogod:) (fog1ds) (fog1di) (figeds) (figedy) (f191d0) (f9:d))

Alfogodo) 0021 0357 0084 0189 0165 0204 0408  0.096
B(fogod1) 0.084 0.089 0.076 0.126 0.150 0.136 0.072 0.144
C(fog190) 0.084 0.323 0.021 0.126 0.150 0.036 0.272 0.144
D(fog1d1) 0.336 0.081 0.019 0.084 0.135 0.024 0.048 0.216
E(f1G0d0) 0.019 0.063 0.336 0171 0.110 0.306 0.102 0.064
F(f190d1) 0.076 0016 0304 0114 0100 0204 0.018 0.096
G(f,g:do) 0076 0057 0084 0114 0100 0054 0068  0.096
H(f;g:d,) 0304 0014 0076 0076 0090 0036 0012 0.144

Does the matrix have a region of stability? Let there be 100 mecha-
nisms Z whose scheme is summarized by (MTPZ). At the moment ¢, d,
mechanisms will have a screen A, d a screen B, . . ., dyy a screen H. At the

moment ¢ + At all 100 mechanisms will produce screens according to the
probabilities written in (MTPZ). Thus,

0.021 d, will stay in 4,
0.357 dg will be transformed to 4,
0.084 d.. will be transformed to A4,

0.096 dj; will be transformed to A.

The d, screens at the moment ¢ will become d}, screens at the moment
i + At, and this number will be equal to the sum of all the screens that will
be produced by the remaining mechanisms, in accordance with the corre-
sponding probabilities.

Therefore:

d, = 0.021d, + 0.357dy + 0.084d, + --- + 0.096d,
dy = 0.084d, + 0.089dg + 0.076d; + --- + 0.144dy
(e;) <di = 0.084d, + 0.323d; + 0.021d. + --- + 0.144d,
dy = 0.304d, + 0.014dy + 0.076d; + --- + 0.1444dy.

At the stationary state the frequency of the screens 4, B, C, . . ., H will
remain constant and the eight preceding equations will become:

(d‘:! = dm dé = ds: dé 1 dc: i

adf’{ o dH)
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0 = —0.9794, + 0.357d5 + 0.084ds + - -- + 0.096d,

0= 0.084d, — 0.911dy + 0.076d, + --- + 0.144d,
() {0 = 0.084d, + 0.323d, — 0.979%, + --- + 0.144d,,
0= 0.304d, + 0.014d, + 0.076dg + --- — 0.856d,
On the other hand

dy+dg +dec + -+ + dy = 1.

If we replace one of the eight equations by the last, we obtain a system
of eight linear equations with eight unknowns. Solution by the classic
method of determinants gives the values:

() {% =017, ds = 0.13,d; = 0.13, d = 0.11, d; = 0.14, d; = 0.12,
% 1dg = 0.10, dg = 0.10,

which are the probabilities of the screens at the stationary stage. This
method is very laborious, for the chance of error is very high (unless a
calculating machine is available).

The second method (see p. 85), which is more approximate but
adequate, consists in making all 100 mechanisms Z set out from a single
screen and letting them evolve by themselves. After several more or less
long oscillations, the stationary state, if it exists, will be attained and the
proportions of the screens will remain invariable.

We notice that the system of equations (¢;) may be broken down into:

1. Two vectors V" and ¥ which may be represented by two unicolumn
matrices:

d
dp
Pl

’
G

dy

and V =
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2. A linear operator, the matrix of transition probabilities Z. Conse-
quently system (e,) can be summarized in a matrix equation:

) | V= 2K

To cause all 100 mechanisms Z to leave screen X and evolve “freely”
means allowing a linear operator:

0.021 0.357 0.084 0.189 0.165 0.204 0.408 0.096
0.084 0.089 0.076 0.126 0.150 0.136 0.072 0.144
0.084 0.323 0.021 0.126 0.150 0.036 0.272 0.144
0.336 0.081 0.019 0.084 0.135 0.024 0.048 0.216
0.019 0.063 0.336 0.171 0.110 0.306 0.102 0.064
0.076 0.016 0.304 0.114 0.100 0.204 0.018 0.096
0.076 0.057 0.084 0.114 0.100 0.054 0.068 0.096
0.304 0.014 0.076 0.076 0.090 0.036 0.012 0.144

to perform on the column vector

in a continuous manner at each moment ¢. Since we have broken down
continuity into a discontinuous succession of thickness in time A¢, the equa-
tion (e,) will be applied to each stage At.

Thus at the beginning (moment ¢ = 0) the population vector of the
mechanisms will be V. After the first stage (moment 0 + A¢) it will be
V' = ZV?; after the second stage (moment 0 + 2A1), V" = ZV' = Z2V°;
and at the nth stage (moment nAt), V™ = Z"V°, In applying these data to
the vector

oo oo ooo

10
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after the first stage at the
moment Af:

after the second stage at the
moment 2A¢:

9.6 18.941
14.4 10.934
14.4 14.479
i ZY S = 21.6 Ve = ZV., = |11.146
6.4 15.164
9.6 11.954
9.6 8.416
14.4 8.966

after the third stage at the
moment 3A¢:

and after the fourth stage at the
moment 4A¢:

16.860 17.111

10.867 11.069

13.118 13.792

W . l13.a48 I . |12.942
e el R
12.257 12.111

8.145 8.238

11.046 10.716

Thus after the fourth stage, an average of 17 out of the 100 mechanisms will
have screen 4, 11 screen B, 14 screen C, .. ., 11 screen H.

If we compare the components of the vector ¥ with the values (e;)
we notice that by the fourth stage we have almost attained the stationary
state, Consequently the mechanism we have built shows a very rapid abate-
ment of the oscillations, and a very great convergence towards final stability,
the goal (stochos). The perturbation Py, which was imposed on the mecha-
nism (MPTZ) when we considered that all the mechanisms (here 100) left
from a single screen, was one of the strongest we could create.

Let us now calculate the state of the 100 mechanisms Z after the first
stage with the maximal perturbations P applied.
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P,

Py

21
8.4
8.4
33.6
1.9
7.6
7.6
30.4

8.4
7.6
2.1
1.9
33.6
30.4
8.4
7.6

16.5
15.0
15.0
18.5
11.0
10.0
10.0

9.0

—
=
COoOO0CO0OO0O00O0O

VB
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100
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100

o

40.8
72
27.2
4.8
10.2
1.8
6.8
1.2
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35.7
8.9
323
8.1
6.3
1.6
5%
1.4

18.9
12.6
12.6
’ 8.4
17.1
11.4
11.4

7.6

20.4
13.6
3.6
2.4
30.6
20.4
5.4
3.6
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Recapitulation of the Analysis

Having arrived at this stage of the analysis we must take our bearings.
On the level of the screen cells we now have: 1. partial mechanisms of
transformation for frequency, intensity, and density ranges,' which are
expressed by the (MTPF), (MTPG), (MTPD); and 2. an interaction
between the three fundamental variables ¥, G, D of the screen (transfor-
mations of the coupling (e,)).

On the level of the screens we now have: 1. eight different screens,
4, B,C, D, E, F, G, H; 2. a general mechanism, the (MTPZ), which sum-
marizes all the partial mechanisms and their interactions; 3. a final state of
equilibrium (the goal, stochos) of the system Z towards which it tends quite
quickly, the stationary distribution; and 4. a procedure of 8isequilibrium in
system Z with the help of the perturbations P which are imposed on it.

SYNTHESIS

Mechanism Z which we have just constructed does not imply a real
evolution of the screens. It only establishes a dynamic situation and a
potential evolution. The natural process is that provoked by a perturbation
P imposed on the system Z and the advancement of this system towards its
goal, its stationary state, once the perturbation has ceased its action. We can
therefore act on this mechanism through the intermediary of a perturbation
such as P, which is stronger or weaker as the case may be. From this it is
only a brief step to imagining a whole series of successive perturbations
which would force the apparatus Z to be displaced towards exceptional
regions at odds with its behavior at equilibrium.

In effect the intrinsic value of the organism thus created lies in the fact
that it must manifest itself, be. The perturbations which apparently change
its structure represent so many negations of this existence. And if we create
a succession of perturbations or negations, on the one hand, and stationary
states or existences on the other, we are only affirming mechanism Z. In
other words, at first we argue positively by proposing and offering as
evidence the existence itself; and then we confirm it negatively by opposing
it with perturbatory states.

The bi-pole of being a thing and not being this thing creates the whole
—the object which we intended to construct at the beginning of Chapter
III. A dual dialectics is thus at the basis of this compositional attitude, a dia-
lectics that sets the pace to be followed. The ““experimental’ sciences are an
expression of this argument on an analogous plane. An experiment estab-
lishes a body of data, a web which it disentangles from the magma of

Markovian Stochastic Music—Applications 95

objective reality with the help of negations and transformations imposed
on this body. The repetition of these dual operations is a fundamental
condition on which the whole universe of knowledge rests. To state some-
thing once is not to define it; the causality is confounded with the repetition
of phenomena considered to be identical.

In conclusion, this dual dialectics with which we are armed in order
to compose within the framework of our mechanism is homothetic with that
of the experimental sciences; and we can extend the comparison to the
dialectics of biological beings or to nothing more than the dialectics of
being. This brings us back to the point of departure.

Thus an entity must be proposed and then a modification imposed on
it. It goes without saying that to propose the entity or its modification in
our particular case of musical composition is to give a human observer the
means to perceive the two propositions and to compare them. Then the
antitheses, entity and modification, are repeated enough times for the entity
to be identified.

What does identification mean in the case of our mechanism Z?

Parenthesis. We have supposed in the course of the analysis that 100
mechanisms Z were present simultaneously, and that we were following the
rules of the game of these mechanisms at each moment of an evolution
created by a displacement beyond the stationary zone. We were therefore
comparing the states of 100 mechanisms in a A¢ with the states of these
100 mechanisms in the next £, so that in comparing two successive stages of
the group of 100 simultaneous states, we enumerate 100 states twice. Enumera-
tion, that is, insofar as abstract action implies ordered operations, means to
observe the 100 mechanisms one by one, classify them, and test them; then
start again with 100 at the following stage, and finally compare the classes
number by number. And if the observation of each mechanism necessi-
tates a fraction of time x, it would take 200x of time to enumerate 200
mechanisms.

This argument therefore allows us to transpose abstractly a simultan-
eity into a lexicographic (temporal) succession without subtracting any-
thing, however little, from the definition of transformations engendered by
scheme Z. Thus to compare two successive stages of the 100 mechanisms Z
comes down to comparing 100 states produced in an interval of time 100x
with 100 others produced in an equal interval of time 100x (see Fig. III-7).

MATERIAL IDENTIFICATION OF MECHANISM z

Identification of mechanism Z means essentially a comparison between
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Fig. ll-7

all its possibilities of being: perturbed states compared to stationary states,
independent of order.

Identification will be established over equal periods of time 100x
following the diagram:

Phenomenon: Py— E— P,—> E
Time: 100x  100x 100x 100x

in which Py and P, represent any perturbations and E is the state of Z at
equilibrium (stationary state).

An alternation of P and E is a protocol in which 100x is the unit of
time (100x = period of the stage), for example:

PRSP BENE P P,

A new mechanism W may be constructed with an (MTP), etc., which
would control the identification and evolution of the composition over more
general time-sets. We shall not pursue the investigation along these lines for
it would lead us too far afield.

A realization which will follow will use a very simple kinematic diagram
of perturbations P and equilibrium E, conditioned on one hand by the
degrees of perturbation P, and on the other by a freely agreed selection.

(¢) E—>P3—>P,—>E—>Py—>P3—>Py—>Py—>E—P,
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pefinition of State £ and of the Perturbations P

From the above, the stationary state £ will be expressed by a sequence

of screens such as:
Protocol E(Z)

ADFFECBDBCFEFADGCHCCHBEDFEFFECFEHBFFFBC
HDBABADDBADADAHHBGADGAHDADGFBEBGABEBB- - -.

To carry out this protocol we shall utilize eight urns [4], [B], [C], [D],
[E], [F], [G], [#], each containing balls of eight different colors, whose
proportions are given by the probabilities of (MTPZ). For example, urn
[G] will contain 40.8%, red balls 4, 7.2%, orange balls B, 27.2%, yellow balls
C, 4.8%, maroon balls D, 10.2%, green balls E, 1.8%, blue balls F, 6.8%,
white balls G, and 1.2%, black balls H. The composition of the other seven
urns can be read from (MTPZ) in similar fashion.

We take a yellow ball C at random from urn [G]. We note the result
and return the ball to urn [G]. We take a green ball E at random from urn
[C]. We note the result and return the ball to urn [C]. We take a black ball
H at random from urn [E], note the result, and return the ball to urn [E].
From urn [H] we take . . .. The protocol so far is: GCEH . . ..

Protocol P§ (V§) is obviously

AAAA
Protocol P} (V}). Consider an urn [Y] in which the eight colors of balls
are in the following proportions: 2.1%, color 4, 8.4%, color B, 8.4%, color
C, 33.6%, color D, 1.9%, color E, 7.6%, color F, 7.6%, color G, and 30.4%,

color H. After each draw return the ball to urn ¥. A likely protocol might
be the following:

GFFGHDDCBHGGHDDHBBHCDDDCGDDDDFDDHHHBF
FHDBHDHHCHHECHDBHHDHHFHDDGDAFHHHDEDG - - -.
Protocol P;. (V). The same method furnishes us with a protocol of P’:

EEGFGEFEEFADFEBECGEEAEFBFBEADEFAAEEFH
ABFECHFEBEFEEFHFAEBFFFEFEEAFHFBEFEEB - - -.

Protocol P& (VQ):

ceee- - -.
Protocol P (Vg):

BBBB- - ..
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Protocol P, (V§):

AAADCCECDAACEBAFGBCAAADGCDDCGCADGAAGEC
CAACAAHAACGCDAACDAABDCCCGACACAACACR. - -.

REALIZATION OF ANALOGIQUE A FOR ORCHESTRA

The instrumental composition follows the preceding exposition point
by point, within the limits of orchestral instruments and conventional
execution and notation. The mechanism which will be used is system Z,
which has already been treated numerically. The choice of variables for the
screens are shown in Figs. II1-8, 9, 10.

4 Z Z Z oz
= Regions © t l‘. t ‘j I. t ®= Frequencies
f 2 3 & 5 6 (semitones)
£y £ D, Dbp; C, B, As
LI R I
(#,) Regions o- : :I i:’ ; oy = Frequencies
1 2 3 4 5 (semitones)

(A; = 440 Hz)

Fig. Ill-8. Frequencies

Nuances of intensity
[}

Nuances of intensity

L
gy | o o[

+ [k <[k

Regions Regions

Fig. lI-9. Intensities
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Fig. llI-10. Densities

This choice gives us the partial screens FG (Fig. III-11) and FD
(Fig. ITI-12), the partial screens GD being a consequence of FG and FD.
The Roman numerals are the liaison agents between all the cells of the
three planes of reference, FG, FD, and GD, so that the different combinations
(fi> &> di) which are perceived theoretically are made possible.

For example, let there be a screen (f;, g;, d,) and the sonic entity C;
corresponding to frequency region no. 3. From the partial screens above,
this entity will be the arithmetic sum in three dimensions of the grains of
cells I, II, and III, lying on frequency region no. 3. C; = I + II + IIIL.

The dimensions of the cell corresponding to I are: AF = region 3,
AG = region 1, AD = region 2. The dimensions of the cell corresponding
to Il are: AF = region 3, AG = region 2, AD = region 1. The dimensions
of the cell corresponding to III are: AF = region 3, AG = region 2,
AD = region 1. Consequently in this sonic entity the grains will have fre-
quencies included in region 3, intensities included inregions 1 and 2, and they
will form densities included in regions 1 and 2, with the correspondences
set forth above.
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NOTE: The numbers written in the cells are the mean densities in grains/sec.

G G £ | ' The eight principal screens 4, B, C, D, E, F, G, H which derive from
w JT ' the combinations in Fig. ITI-5 are shown in Fig. III-13. The duration At
. i of each screen is 1.11 sec. (1 half note = 54 MM). Within this duration the
i Q) X 2 b/4 -, ) IR W | densities of the occupied cells must be realized. The period of time necessary
1i : for the exposition of the protocol of each stage (of the protocol at the station-
ﬁ ! z /g i B 4 o : ary stage, and of the protocols for the perturbations) is 30A¢, which becomes
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The linkage of the perturbations and the stationary sfate of (MTPZ) is
given by the following kinematic diagram, which was chosen for this
purpose:

(es) E->Py—>P,>E-—>P,>P>P}>P,—>E—>P,

T Caatadlr T
5 o

7o LA
s

Fig. lll-14. Bars 105-15 of Analogique A

Markovian Stochastic Music—Applications 103

Fig. I1I-14, bars 105-15 of the score of Analogique A, comprises a section
of perturbations P§ and Pg. The change of period occurs at bar 109. The
disposition of the screens is given in Fig. III-15. For technical reasons
screens E, F, G, and H have been simplified slightly.

105 109 115
... | BB | BB | BB |BB|AA| GE| CC | AA | CA | AH | ---

End of the period of —|< Beginning of return to equi-
perturbation P3 librium (perturbation Pg)

Fig. lI-15

Analogique A replaces elementary sinusoidal sounds by very ordered
clouds of elementary grains, restoring the string timbres. In any case a
realization with classical instruments could not produce screens having a
timbre other than that of strings because of the limits of human playing.
The hypothesis of a sonority of a second order cannot, therefore, be con-
firmed or invalidated under these conditions.

On the other hand, a realization using electromagnetic devices as
mighty as computers and adequate converters would enable one to prove
the existence of a second order sonority with elementary sinusoidal grains
or grains of the Gabor type as a base.

While anticipating some such technique, which has yet to be developed,
we shall demonstrate how more complex screens are realizable with the
resources of an ordinary electroacoustic studio equipped with several mag-
netic tapes or synchronous recorders, filters, and sine-wave generators.

ELECTROMAGNETIC MUSIC (sinusoidal sounds)—EXAMPLE
TAKEN FROM ANALOGIQUE B

We choose: 1. Two groups of frequency regions f,, f;, as in Fig. ITT-16,
The protocols of these two groups will be such that they will obey the
preceding (MTP)’s:

‘. AR
Jo £ 1085 0.4
@ £ 1015 06

in which («) and (B) are the parameters.
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3. Two groups of density regions d,, d;, as in Fig. III-18. The protocols

pil e, 2 00E z m @ a s 1 : : e .
— S gl g A e s of this group will have the same (MTP)’s with parameters (A) and () :

Hz #2 &4 178 Erg 70 #ito 1850 ) whos F

Regions RS a A A AH Y  a w s
()
i
!
7 I
H - . 4 ; 1 r’_\w :r_y__‘:r_‘_l, - ,rgjx,,g‘% ’ } J :
z 4 &4 /78 s 0 lata 2950 AT =

Regions: Wit dion ] B Ui e sl gl Maan el o T g et

Fig. llI-16

2. Two groups of intensity regions go, g;, as in Fig. III-17. The
protocols of this group will again obey the same (MTP)’s with their
parameters (y) and (e):

T I =

@) (e)
f G G
| r EN e 3
:1 A i Fig. II-18
= --g L L O :
: § m B o ? ' This choice gives us the principal screens 4, B, C, D, E, F, G, H, as
b L a1 o shown in Fig. III-19. The duration At of each screen is about 0.5 sec.
2 N ; = The period of exposition of a perturbation or of a stationary state is about |
. Ll W 15 sec I
! E W H = * a - |
: SR < We shall choose the same protocol of exchanges between perturba- i
| S it tions and stationary states of (MTPZ), that of Analogique A. |
£ 8 g (¢ E—>P3—>P,—>E—>Pi—~ P3PS Py—>E—P,
z o T

|
The screens of Analogique B calculated up to now constitute a special
choice. Later in the course of this composition other screens will be used

=
R

~—

— Regions
N

e

more particularly, but they will always obey the same rules of coupling
and the same (MTPZ). In fact, if we consider the combinations of regions
of the variable f; of a screen, we notice that without tampering with the |

Fig. 117 name of the variable f; its structure may be changed.
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Thus for f, we may have the regions shown in Fig. II1-20. The Roman
numerals establish the liaison with the regions of the other two variables.
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But we could have chosen another combination fj, as in Fig. ITI-21.
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This prompts the question: “Given n divisions AF (regions on F) what
is the total number of possible combinations of AF regions?

Ist case. None of the n areas is used. The screen corresponding to this
combination is silent. The number of these combinations will be

Fig. l-21

n!
(n — 0)10! il
2nd case. One of the n areas is occupied. The number of combinations
n!
(n— DY
3rd case. Two of the n areas are occupied. The number of combinations
will be
n!
(n—2)121°
mth case. m of the n areas are occupied. The number of combinations
will be

n!
(n—m)im!

FIG. 111-19: The Arabic numbers above the Roman numerals in the cells indicate the density in
logarithmic units. Thus cell (10,1) will have a density of [(log 1.3/log 3) +5] terts, which is 315.9
grains/sec on the average.
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nth case. n of the areas are occupied. The number of the combinations

will be

n!
(n — n)!n!

The total number of combinations will be equal to the sum of all the ".

preceding:

n! n! n!

GO B et

n! n!
i [n=(n—1)](n— I)! i (n = n)ln!,

n

The same argument operates for the other two variables of the screen,
Thus for the intensity, if £ is the number of available regions AG, the total

number of variables g, will be 2¥; and for the density, if 7 is the number of

available regions AD, the total number of variables 4; will be 2.
Consequently the total number of possible screens will be

T = 9n+k+n,

In the case of Analogigue B we could obtain 2016+4+D — 927 _
134,217,728 different screens.
Important comment. At the start of this chapter we would have accepted

the richness of a musical evolution, an evolution based on the method of

stochastic protocols of the coupled screen variables, as a function of the
transformations of the entropies of these variables. From the preceding

calculation, we now see that without modifying the entropies of the (MTPF),

(MTPG), and (MTPD) we may obtain a supplementary subsidiary evo-
lution by utilizing the different combinations of regions (topographic
criterion).

Thus in Analogique B the (MTPF), (MTPG), and (MTPD) will not
vary. On the contrary, in time the f, g, d, will have new structures, corol-
laries of the changing combinations of their regions.

Complementary Conclusions about Screens and Their
Transformations

1. Rule. To form a screen one may choose any combination of regions
on F, G, and D, the f;, g;, d,.

2. Fundamental Criterion. Each region of one of the variables F, G, D
must be associable with a region corresponding to the other two variables
in all the chosen couplings. (This is accomplished by the Roman numerals.)
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3. The preceding association is arbitrary (free choice) for two pairs,
but obligatory for the third pair, a consequence of the first two. For example,
the associations of the Roman numerals of f; with those of g; and with those
of d,, are both free; the association of the Roman numerals of g; with those
of d, is obligatory, because of the first two associations.

4. The components f;, g;, d of the screens generally have stochastic

rotocols which correspond, stage by stage.

5. The (MTP) of these protocols will, in general, be coupled with the
help of parameters.

6. If F, G, D are the “variations” (number of components f;, g, d;,
respectively) the maximum number of couplings between the components
and the parameters of (MTPF), (MTPG), (MTPD) is the sum of the
products GD + FG + FD. In an example from Analogique A or B:

F = 2 (f,and f;) the parameters of the (MTP)’s are: «, 8
G = 2 (go and g;) Ys €
D = 2 (d, and d;) Ap

and there are 12 couplings:

lﬂflfoﬁga & & & dy dy dy d;
SR O el TR

Indeed, FG + FD + GD =4 + 4 + 4 = 12,

7. If F, G, D are the “variations” (number of components f;, g;, dy,
respectively), the number of possible screens T is the product FGD. For
example, if F =2 (f, and f;), G = 2 (g, and g,), D = 2 (d, and d,),
T'=2x2x2=8.

8. The protocol of the screens is stochastic (in the broad sense) and can
be summarized when the chain is ergodic (tending to regularity), by an
(MTPZ). This matrix will have FGD rows and FGD columns.

SPATIAL PROJECTION

No mention at all has been made in this chapter of the spatialization
of sound. The subject was confined to the fundamental concept of a sonic
complex and of its evolution in itself. However nothing would prevent
broadening of the technique set out in this chapter and ‘““leaping” into
space. We can, for example, imagine protocols of screens attached to a
particular point in space, with transition probabilities, space-sound coup-
lings, etc. The method is ready and the general application is possible,
along with the reciprocal enrichments it can create.
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Chapter IV

Musical Strategy—Strategy, Linear
Programming, and Musical
Composition

Before passing to the problem of the mechanization of stochastic music by
the use of computers, we shall take a stroll in a more enjoyable realm, that
of games, their theory, and application in musical composition.

AUTONOMOUS MUSsIC

The musical composer establishes a scheme or pattern which the con-
ductor and the instrumentalists are called upon to follow more or less rigor-

ously. From the final details—attacks, notes, intensities, timbres, and stylesof

performance—to the form of the whole work, virtually everything is written
into the score. And even in the case where the composer leaves a margin of
improvisation to the conductor, the instrumentalist, the machine, or to all
three together, the unfolding of the sonic discourse follows an open line
without loops. The score-model which is presented to them once and for
all does not give rise to any conflict other than that between a “good” per-
formance in the technical sense, and its “musical expression” as desired or
suggested by the writer of the score. This opposition between the sonic
realization and the symbolic schema which plots its course might be called
internal conflict; and the role of the conductors, instrumentalists, and their
machines is to control the output by feedback and comparison with the
input signals, a role analogous to that of servo-mechanisms that reproduce
profiles by such means as grinding machines. In general we can state that
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the nature of the technical oppositions (instrumental and conductorial) or
even those relating to the aesthetic logic of the musical discourse, is infernal
to the works written until now. The tensions are shut up in the score even
when more or less defined stochastic processes are utilized. This traditional
class of internal conflict might be qualified as autonomous music.

Fig. IV-1

1. Conductor

2. Orchestra 4
3. Score

4. Audience

HETERONOMOUS MUSIC

It would be interesting and probably very fruitful to imagine another
class of musical discourse, which would introduce a concept of external
conflict between, for instance, two opposing orchestras or instrumentalists.
One party’s move would influence and condition that of the other. The sonic
discourse would then be identified as a very strict, although often stochastic,
succession of sets of acts of sonic opposition. These acts would derive from
both the will of the two (or more) conductors as well as from the will of the
composer, all in a higher dialectical harmony.
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Let us imagine a competitive situation between two orchestras, each
having one conductor. Each of the conductors directs sonic operations
against the operations of the other. Each operation represents a move or a
tactic and the encounter between two moves has a numerical .and/or a
qualitative value which benefits one and harms the other. This value is
written in a grid or matrix at the intersection of the row corresponding to
move 7 of conductor 4 and the column corresponding to move j of conductor
B. This is the partial score ij, representing the payment one conductor gives
the other. This game, a duel, is defined as a two-person zero-sum game.

The external conflict, or heteronomy, can take all sorts of forms, but can
always be summarized by a matrix of payments ij, conforming to the mathe-
matical theory of games. The theory demonstrates that there is an optimum
way of playing for 4, which, in the long run, guarantees him a minimum
advantage or gain over B whatever B might do; and that conversely there
exists for B an optimum way of playing, which guarantees that his disad-
vantage or loss under 4 whatever 4 might do will not exceed a certain
maximum. 4’s minimum gain and B’s maximum loss coincide in absolute
value; this is called the game value.

The introduction of an external conflict or Aeteronomy into music is not
entirely without precedent. In certain traditional folk music in Europe and
other continents there exist competitive forms of music in which two instru-
mentalists strive to confound one another. One takes the initiative and
attempts either rhythmically or melodically to uncouple their tandem
arrangement, all the while remaining within the musical context of the
tradition which permits this special kind of improvisation. This contra-
dictory virtuosity is particularly prevalent among the Indians, especially
among tabla and sarod (or sitar) players.

A musical heteronomy based on modern science is thus legitimate even to
the most conformist eye. But the problem is not the historical justification of
a new adventure; quite the contrary, it is the enrichment and the leap
forward that count. Just as stochastic processes brought a beautiful gen-
eralization to the complexity of linear polyphony and the deterministic
logic of musical discourse, and at the same time disclosed an unsuspected
opening on a totally asymmetric aesthetic form hitherto qualified as non-
sense; in the same way heteronomy introduces into stochastic music a comple-
ment of dialectical structure.

We could equally well imagine setting up conflicts between two or more
instrumentalists, between one player and what we agree to call natural
environment, or between an orchestra or several orchestras and the public.
But the fundamental characteristic of this situation is that there exists a gain

|
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and a loss, a victory and a defeat, which may be expressed by a moral or
material reward such as a prize, medal, or cup for one side, and by a penalty
for the other.

A degenerate game is one in which the parties play arbitrarily following
a more or less improvised route, without any conditioning for conflict, and
therefore without any new compositional argument. This is a false game.

A gambling device with sound or lights would have a trivial sense if it
were made in a gratuitous way, like the usual slot machines and juke boxes,
that is, without a new competitive inner organization inspired by any
heteronomy. A sharp manufacturer might cash in on this idea and produce
new sound and light devices based on heteronomic principles. A less trivial
use would be an educational apparatus which would require children (or
adults) to react to sonic or luminous combinations. The aesthetic interest,
and hence the rules of the game and the payments, would be determined by
the players themselves by means of special input signals.

In short the fundamental interest set forth above lies in the mutual
conditioning of the two parties, a conditioning which respects the greater
diversity of the musical discourse and a certain liberty for the players, but
which involves a strong influence by a single composer. This point of view
may be generalized with the introduction of a spatial factor in music and
with the extension of the games to the art of light.

In the field of calculation the problem of games is rapidly becoming
difficult, and not all games have received adequate mathematical clar-
ification, for example, games for several players. We shall therefore con-
fine ourselves to a relatively simple case, that of the two-person zero-sum
game.

ANALYSIS OF DUEL

This work for two conductors and two orchestras was composed in
1958-59. It appeals to relatively simple concepts: sonic constructions putinto
mutual correspondence by the will of the conductors, who are themselves
conditioned by the composer. The following events can occur:

Event I: A cluster of sonic grains such as pizzicati, blows with the
wooden part of the bow, and very brief arco sounds distributed stochastic-
ally,

Eyent IT: Parallel sustained strings with fluctuations.

Event III: Networks of intertwined string glissandi.

Event IV: Stochastic percussion sounds.
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Event V: Stochastic wind instrument sounds.
Event VI: Silence.

Each of these events is written in the score in a very precise manner and
with sufficient length, so that at any moment, following his instantaneous
choice, the conductor is able to cut out a slice without destroying the iden-
tity of the event, We therefore imply an overall homogeneity in the writing
of each event, at the same time maintaining local fluctuations.

We can make up a list of couples of simultaneous events x, y issuing
from the two orchestras X and Y, with our subjective evaluations. We can
also write this list in the form of a qualitative matrix (M,).

Table of Evaluations

Couple Evaluation
(5,9) = (%)
(I 1) passable  (p)
(LI) = (ILT) good (g
(LII) = (IIL1) good*  (g*)
(I, IV) = (IV,I) passable* (p*)
(LV)=(V,I)  verygood (g**)
(II, II) passable ()
(II, III) = (IIL, II) passable (p)
(IL1IV) = (IV, II) good (2)
(IL V) = (V,II) passable* (g*)
(I11, III) passable  (p)
(LI, IV) = (IV, III) good* (g*%)
(UL V) = (V,II) good (g)
(Iv, IV) passable  (p)
(IV, V) = (V,1IV)  good (&)
(V, V) passable  (p)
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In (M) the largest minimum per row and the smallest maximum per
column do not coincide (g # p), and consequently the game has no saddle
point and no pure strategy. The introduction of the move of silence (VI)
modifies (M), and matrix (M,) results.
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This time the game has several saddle points. All tactics are possible,
but a closer study shows that the conflict is still too slack: Conductor ¥ is
interested in playing tactic VI only, whereas conductor X can choose freely

among I, II, III, IV, and V. It must not be forgotten that the rules of this :

matrix were established for the benefit of conductor X and that the game in

this form is not fair. Moreover the rules are too vague. In order to pursue
our study we shall attempt to specify the qualitative values by ordering them

on an axis and making them correspond to a rough numerical scale:

LI (I N g
—

N S TR N

-

If, in addition, we modify the value of the couple (VI, VI) the matrix

becomes (A;).

Conductor ¥
I ITI II1 IV V VI

U 0 0T e e o B R

e S e

6 N e g 0 0 . 8 ) S |
Conductor X (M)

AR 0 78 e R L

Vi orelat st sl el 1

o U S 5 B

T A S Al

(M) has no saddle point and no recessive rows or columns. To find 1
the solution we apply an approximation method, which lends itself easily to

computer treatment but modifies the relative equilibrium of the entries as

little as possible. The purpose of this method is to find a mixed strategy;
that is to say, a weighted multiplicity of tactics of which none may be zero.

It is not possible to give all the calculations here [21], but the matrix that

results from this method is (M,), with the two unique strategies for X and
for Y written in the margin of the matrix. Conductor X must therefore play
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Conductor ¥
| VT 00 1, A S |

Lol @& )4 [0 s 218

H §312121 3Rt g s

III 412004 403 1 5
Conductor X (M)
IV Ao 0 L (0 T8 DG 1 (S 5

Yol 32k 3420 2141

NI 2023 L1 20204115

9.6 812 =9 14 . 58 Total

tactics I, IT, III, IV, V, VI in proportions 18/58, 4/58, 5/58, 5/58, 11/58,
15/58, respectively; while conductor ¥ plays these six tactics in the propor-
tions 9/58, 6/58, 8/58, 12/58, 9/58, 14/58, respectively. The game value from
this method is about 2.5 in favor of conductor X (game with zero-sum but
still not fair).

We notice immediately that the matrix is no longer symmetrical about
its diagonal, which means that the tactic couples are not commutative,
e.g., (IV, II = 4) # (II, IV = 3). There is an orientation derived from
the adjustment of the calculation which is, in fact, an enrichment of the
game.

The following stage is the experimental control of the matrix.

Two methods are possible:

1. Simulate the game, i.e., mentally substitute oneself for the two
conductors, X and ¥, by following the matrix entries stage by stage, without
memory and without bluff, in order to test the least interesting case.

sages: |1]2]3]4]5]6[7[8[o]10]11]12]13]14]15]16]17]18]19]20]21
Cond. X|1| 111 | I |v1 I | mr | vi | v | 111 | e | v
Cond.¥|tv|mr|vi|m| &t | vi|m | v | | m
scores: [2]4]1]4]2]a[1]a]2] 4|1 ]a]1]e]2]s]2]2]1]4]2

—

Game value: 52/20 = 2.6 points in X”’s favor.
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2. Choose tactics at random, but with frequencies proportional to the
marginal numbers in (M,).

Stages: | 1|2(3[4[s|6]7[8[o[10]1]12[13[14]15] 16]17]18]10 2021
Cond. X|T|VI|Vi|m || [ v ][] Joeawe g
Cond. ¥ VI|vI| Vv |m| 1| v |vi| v || w |

Scores: |2|4|4|¢[2|3]2|4]2[3]s[3s]2]2]2]s]2]3]2]2]3

Game value: 57/21 = 2.7 points in X’s favor.

We now establish that the experimental game values are very close to
the value calculated by approximation. The sonic processes derived from
the two experiments are, moreover, satisfactory.

We may now apply a rigorous method for the definition of the optimum
strategies for X'and ¥ and the value of the game by using methods of linear
programming, in particular the simplex method [22]. This method is based
on two theses:

1. The fundamental theorem of game theory (the “ minimax theorem )
is that the minimum score (maximin) corresponding to X’s optimum
strategy is always equal to the maximum score (minimax) corresponding to
Y’s optimum strategy.

2. The calculation of the maximin or minimax value, just as the
probabilities of the optimum strategies of a two-person zero-sum game, comes
down to the resolution of a pair of dual problems of linear programming
(dual simplex method).

Here we shall simply state the system of linear equations for the player
of the minimum, Y. Lety,, 95, 3, 44, ¥s, ¥ be the probabilities corresponding
to tactics I, II, IIT, IV, V, VI of ¥; y,, ys, Y5 Y105 Y115 Y12 be the “slack”
variables; and » be the game value which must be minimized. We then have
the following liaisons:

ity +ys+ys+ys +ys =1
2y1+3y2+4?/3+2y4+3y5+25‘s+y7=3’
31 + 295 + 293 + 294 + Bys + 26 + yg = v
291 + 4y + 4ys + 2y + 25 + 2 + Yo = v
3y1 + 295 + 3ys + 3ys + 25 + 2 + Y10 = v
2y, + 2y, + Ys + 294 + 295 + 4ys + 4y, = v
W+ 292+ Ys +Wa + 3Ys + Yo + Y10 = 0

To arrive at a unique strategy, the calculation leads to the modification

Strategy, Linear Programming, and Musical Composition 119

of the score (III, IV = 4) into (III, IV = 5). The solution gives the follow-
ing optimum strategies:

For X For ¥
Tactics Probabilities Tactics Probabilities

I 2/17 1 5/17

II 6/17 19 2/17
111 0 I11 2/17
v 3/17 IV 1/17
vV 2/17 Vv 2/17
VI 4/17 VI 5/17

and for the game value, v = 42/17 x~ 2.47. We have established that X
must completely abandon tactic III (probability of III = 0), and this we

must avoid. . -
Modifying score (II, IV = 3) to (II, IV = 2), we obtain the following
optimum strategies:

For X For ¥
Tactics Probabilities Tactics Probabilities
| 14/56 I 19/56
1I 6/56 II 7/56
III 6/56 111 6/56
IV 6/56 v 1/56
v 8/56 Vv 7/56
VI 16/56 VI 16/56

and for the game value, v = 138/56 = 2.47 points.

Although the scores have been modified a little, the game value has,
in fact, not moved. But on the other hand the optimum strategies have
varied widely. A rigorous calculation is therefore necessary, and the final
matrix accompanied by its calculated strategies is (Mj).
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Conductor Y
E IR LIV VOOV

Lipeen gt 4ttt 21 44

II sgl21el2is8) 21 '6

III A 6
Conductor X (M)

v slElel202] 21 @&

LA e o et W S

VI 2020912121 4| 16

GO G L 6 56 Total

By applying the elementary matrix operations to the rows and columns

in such a way as to make the game fair (game value = 0), we obtain the

equivalent matrix (M) with a zero game value.

Conductor ¥
I II 1 2 AR ¢ AV VI

&

I [-13 15| 43| —13 15| —13

56
1I I5(-13| —13| —13 15| -13| &
II1 43 —13| —41 71 15| —41| &

Conductor X (M)
IV 1 —18] 43| 48| 18] —-18]| —13

o

56
itk oo e 15 (R 5o R L T BRTY S
VI [-13( 13| 41| -13| 13| 43| 1

o e R R ST o8
56 56 56 56 56

|

i}
6

As this matrix is difficult to read, it is simplified by dividing all the
scores by + 13, It then becomes (M) with a game value » = — 0.07, which
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Conductor ¥
I TR VERE O INE % R BGIRER

k

I | =1 +1| 43| -1 +1] -1

tn
=

o

II +1 | =1 =1 =1 +1] =1 5

o

III +3 | -1 =3 +5| +1| -3 | &
Conductor X (M5)
IV | -1 +3| +3| =1 | 1| 1| &
V |+l =141 41| -=1] 1| &
VI | -1} =1} =8| <1|~1}+8] 3¢
: ¢ DM Ll SIS

means that at the end of the game, at the final score, conductor ¥ should
give 0.07m points to conductor X, where m is the total number of moves.

If we convert the numerical matrix (M,) into a qualitative matrix
according to the correspondence:

Aoy il +1 +3 +5
o g R S
p P inies i

we obtain (M), which is not very different from (M), except for the silence
couple, VI, VI, which is the opposite of the first value. The calculation is
now finished.

b PO O i g

TS 1 el I O B

']
+
+

=

-

Uy
3
+

=
+

> = = = =

ar 1 b ¢ Sl 1




i: .
|
|

e

122 Formalized Music

Mathematical manipulation has brought about a refinement of the
duel and the emergence of a paradox: the couple VI, VI, characterizing
total silence. Silence is to be avoided, but to do this it is necessary to aug-
ment its potentiality. ;

It is impossible to describe in these pages the fundamental role of the

mathematical treatment of this problem, or the subtle arguments we are
forced to make on the way. We must be vigilant at every moment and over
every part of the matrix area. It is an instance of the kind of work where
detail is dominated by the whole, and the whole is dominated by detail. It
was to show the value of this intellectual labor that we judged it useful to
set out the processes of calculation.

The conductors direct with their backs to each other, using finger or

light signals that are invisible to the opposing orchestra. If the conductors
use illuminated signals operated by buttons, the successive partial scores
can be announced automatically on lighted panels in the hall, the way the
score is displayed at football games. If the conductors just use their fingers,
then a referee can count the points and put up the partial scores manually
so they are visible in the hall. At the end of a certain number of exchanges
or minutes, as agreed upon by the conductors, one of the two is declared
the winner and is awarded a prize.

Now that the principle has been set out, we can envisage the interven-
tion of the public, who would be invited to evaluate the pairs of tactics of
conductors X and Y and vote immediately on the make-up of the game
matrix. The music would then be the result of the conditioning of the
composer who established the musical score, conductors X and ¥, and the
public who construct the matrix of points.

RULES OF THE WORK STRATEGIE

The two-headed flow chart of Duel is shown in Fig. IV-2. It is equally
valid for Stratégie, composed in 1962. The two orchestras are placed on
either side of the stage, the conductors back-to-back (Fig. IV-3), or on
platforms on opposite sides of the auditorium. They may choose and play
one of six sonic constructions, numbered in the score from I to VI. We call
them tactics and they are of stochastic structure. They were calculated on
the IBM-7090 in Paris. In addition, each conductor can make his orchestra
play simultaneous combinations of two or three of these fundamental tactics.
The six fundamental tactics are:

Strategy, Linear Programming, and Musical Composition 123

I. Winds
I1. Percussion
ITI. String sound-box struck with the hand
IV. String pointillistic effects
V. String glissandi
VI. Sustained string harmonics.

The following are 13 compatible and simultaneous combinations of these
tactics:

I&II =VII II&III=XII I&II&III=XVI
T&III = VIII II&IV =XIII I1&II&IV = XVII
I&IV = 1X &V =XIV I1&I1&V = XVIII
&Y =X IH&VI =XV I&II&VI =XIX
1 & VI = X1

Thus there exist in all 19 tactics which each conductor can make his orches-
tra play, 361 (19 x 19) possible pairs that may be played simultaneously.

The Game

1. Choosing tactics. How will the conductors choose which tactics to
play?

a. A first solution consists of arbitrary choice. For example, conductor
X chooses tactic I. Conductor ¥ may then choose any one of the 19 tactics
including I. Conductor X, acting on ¥’s choice, then chooses a new tactic
(see Rule 7 below). X’s second choice is a function of both his taste and ¥’s
choice. In his turn, conductor ¥, acting on X’s choice and his own taste,
cither chooses a new tactic or keeps on with the old one, and plays it for a
certain optional length of time. And so on. We thus obtain a continuous
succession of couplings of the 19 structures.

6. The conductors draw lots, choosing a new tactic by taking one card
from a pack of 19; or they might make a drawing from an urn containing
balls numbered from I to XIX in different proportions. These operations can
be carried out before the performance and the results of the successive draws
set down in the form of a sequential plan which each of the conductors will
have before him during the performance.

¢. The conductors get together in advance and choose a fixed succession
which they will direct.

d. Both orchestras are directed by a single conductor who establishes
the succession of tactics according to one of the above methods and sets
them down on a master plan, which he will follow during the performance.
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Double basses
Double basses

Cellos

Violas

Violins
Violins
Violas
Cellos

$1039NpU0Y
A X

Marimbaphone
Percussion
Vibraphone

Percussion
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e. Actually all these ways constitute what one may call *“degenerate”
competitive situations. The only worthwhile setup, which adds something
new in the case of more than one orchestra, is one that introduces dual
conflict between the conductors. In this case the pairs of tactics are per-
formed simultaneously without interruption from one choice to the next
(see Fig. IV-4), and the decisions made by the conductors are conditioned
by the winnings or losses contained in the game matrix.

Garws 78 72 46 36
or X 4
TACT/CS I X XVl RV XV v
3 GAINS g2 40 48 28 44
orRY
TACTIES v M xXv v
Fig. IV-4

2. Limiting the game. The game may be limited in several ways: a. The
conductors agree to play to a certain number of points, and the first to reach
it is the winner. 4. The conductors agree in advance to play n engagements,
The one with more points at the end of the nth engagement is the winner.
¢. The conductors decide on the duration for the game, m seconds (or
minutes), for instance. The one with more points at the end of the mth
second (or minute) is the winner.

3. Awarding points.

a. One method is to have one or two referees counting the points in
two columns, one for conductor X and one for conductor ¥, both in positive
numbers. The referees stop the game after the agreed limit and announce
the result to the public.

b. Another method has no referees, but uses an automatic system that
consists of an individual board for each conductor. The board has the
n x ncells of the game matrix used. Each cell has the corresponding partial
score and a push button. Suppose that the game matrix is the large one of
19 x 19 cells. If conductor X chooses tactic XV against ¥’s IV, he presses
the button at the intersection of row XV and column IV. Corresponding to
this intersection is the cell containing the partial score of 28 points for X and
the button that X must push. Each button is connected to a small adding
machine which totals up the results on an electric panel so that they can be
seen by the public as the game proceeds, just like the panels in the football
stadium, but on a smaller scale.

4. Assigning of rows or columns is made by the conductors tossing a coin.

5. Deciding who starts the game is determined by a second toss.
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6. Reading the tactics. The orchestras perform the tactics cyclically on a
closed loop. Thus the cessation of a tactic is made instantaneously at a bar
line, at the discretion of the conductor. The subsequent eventual resumption
of this tactic can be made either by: a. reckoning from the bar line defined
above, or b. reckoning from a bar line identified by a particular letter. The
conductor will usually indicate the letter he wishes by displaying a large
card to the orchestra. If he has a pile of cards bearing the letters 4 through
U, he has available 22 different points of entry for each one of the tactics.
In the score the tactics have a duration of at least two minutes. When the
conductor reaches the end of a tactic he starts again at the beginning, hence
the “da capo” written on the score.

7. Duration of the engagements. The duration of each engagement is
optional. It is a good idea, however, to fix a lower limit of about 10 seconds;
i.e., if a conductor engages in a tactic he must keep it up for at least 10
seconds. This limit may vary from concert to concert. It constitutes a wish
on the part of the composer rather than an obligation, and the conductors
have the right to decide the lower limit of duration for each engagement
before the game. There is no upper limit, for the game itself conditions
whether to maintain or to change the tactic.

8. Result of the contest. To demonstrate the dual structure of this compo-
sition and to honor the conductor who more faithfully followed the con-
ditions imposed by the composer in the game matrix, at the end of the
combat one might a. proclaim a victor, or b. award a prize, bouquet of
flowers, cup, or medal, whatever the concert impresario might care to
donate.

9. Choice of matrix. In Stratégie there exist three matrices. The large one,
19 rows x 19 columns (Fig. IV-5), contains all the partial scores for pairs
of the fundamental tactics I to VI and their combinations. The two smaller
matrices, 3 x 3, also contain these but in the following manner: Row 1 and
column I contain the fundamental tactics from I to VI without discrimina-
tion; row 2 and column 2 contain the two-by-two compatible combinations
of the fundamental tactics; and row 3 and column 3 contain the three-by-
three compatible combinations of these tactics. The choice between the
large 19 x 19 matrix and one of the 3 x 3 matrices depends on the ease
with which the conductors can read a matrix. The cells with positive scores
mean a gain for conductor X and automatically a symmetrical loss for
conductor Y. Conversely, the cells with negative scores mean a loss for
conductor X and automatically a symmetrical gain for conductor Y.
The two simpler, 3 x 3 matrices with different strategies are shown in
Fig. IV-6.
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This fragment can be replaced by the single score

AH—m s+n — :'?:Iij=ﬂ (af+i.s+iJ(§r+i)(ks+!)
' bk
and by the probabilities
Qi Z Gy +i
i=1
and
K= 2; .

F)perating in this way with the 19 x 19 matrix we obtain the following
matrix (the tactics will be the same as in the matrices in Fig. IV-6):

7704 [ 829 592 95
25 x 25 49 x 25 25 x 26
14522 17610 3088 i '
25 x 45 49 x 45| 45 x 26
6818 9314 2496 %0
25 x 30 49 x 30 30 x 26

25 49 26

2465 | —1354 182125

or —2581 1597 | —528| 45

1818 | —1267 640 | 30

25 49 26

Chapter V

Free Stochastic Music by Computer

After this interlude, we return to the treatment of composition by machines.

The theory put forward by Achorripsis had to wait four years before
being realized mechanically. This realization occurred thanks to M.
Frangois Génuys of IBM-France and to M. Jacques Barraud of the Régie
Autonome des Transports Parisiens.

THE PARADOX: MUSIC AND COMPUTERS
A STOCHASTIC WORK EXECUTED BY THE IBM-70Q0

The general public has a number of different reactions when faced by
the alliance of the machine with artistic creation. They fall into three
categories:

“It is impossible to obtain a woerk of art, since by definition it is a handi-
craft and requires moment-by-moment “creation” for each detail and for
the entire structure, while a machine is an inert thing and cannot invent.”

“Yes, one may play games with a machine or use it for speculative
purposes, but the result will not be “finished”: it will represent only an
experiment—interesting, perhaps, but no more.”

The enthusiasts who at the outset accept without flinching the
whole frantic brouhaha of science fiction. “The moon? Well, yes, it’s
within our reach. Prolonged life will also be with us tomorrow—why not a
creative machine?”” These people are among the credulous, who, in their
idiosyncratic optimism, have replaced the myths of Icarus and the fairies,
which have decayed, by the scientific civilization of the twentieth century,
and science partly agrees with them. In reality, science is neither all
paradox nor all animism, for it progresses in limited stages that are not
foreseeable at too great a distance.
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There exists in all the arts what we may call rationalism in the etymo-
logical sense: the search for proportion. The artist has always called upon it
out of necessity. The rules of construction have varied widely over the cen-
turies, but there have always been rules in every epoch because of the
necessity of making oneself understood. Those who believe the first statement
above are the first to refuse to apply the qualification artistic to a product
which they do not understand at all.

Thus the musical scale is a convention which circumscribes the area of
potentiality and permits construction within those limits in its own particu-
lar symmetry. The rules of Christian hymnography, of harmony, and of
counterpoint in the various ages have allowed artists to construct and to
make themselves understood by those who adopted the same constraints—
through traditions, through collective taste or imitation, or through sym-
pathetic resonance. The rules of serialism, for instance, those that banned
the traditional octave doublings of tonality, imposed constraints which were
partly new but none the less real.

Now everything that is rule or repeated constraint is part of the mental
machine. A little “imaginary machine,” Philippot would have said—a
choice, a set of decisions. A musical work can be analyzed as a multitude
of mental machines. A melodic theme in a symphony is a mold, a mental
machine, in the same way as its structure is. These mental machines are
something very restrictive and deterministic, and sometimes very vague and
indecisive. In the last few years we have seen that this idea of mechanism is
really a very general one. It flows through every area of human knowledge
and action, from strict logic to artistic manifestations.

Just as the wheel was once one of the greatest products of human
intelligence, a mechanism which allowed one to travel farther and faster
with more luggage, so is the computer, which today allows the transforma-
tion of man’s ideas. Computers resolve logical problems by heuristic methods.
But computers are not really responsible for the introduction of mathematics
into music; rather it is mathematics that makes use of the computer in
composition. Yet if people’s minds are in general ready to recognize the
usefulness of geometry in the plastic arts (architecture, painting, etc.), they
have only one more stream to cross to be able to conceive of using more
abstract, non-visual mathematics and machines as aids to musical composi-
tion, which is more abstract than the plastic arts.

To summarize:

1. The creative thought of man gives birth to mental mechanisms,
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which, in the last analysis, are merely sets of constraints and choices. This
process takes place in all realms of thought, including the arts.

2. Some of these mechanisms can be expressed in mathematical terms.

3. Some of them are physically realizable: the wheel, motors, bombs,
digital computers, analogue computers, etc.

4. Certain mental mechanisms may correspond to certain mechanisms
of nature.

5. Certain mechanizable aspects of artistic creation may be simulated
by certain physical mechanisms or machines which exist or may be created.

6. It happens that computers can be useful in certain ways.

Here then is the theoretical point of departure for a utilization of
electronic computers in musical composition.

We may further establish that the role of the living composer seems to
have evolved, on the one hand, to one of inventing schemes (previously
forms) and exploring the limits of these schemes, and on the other, to effect-
ing the scientific synthesis of the new methods of construction and of sound
emission. In a short while these methods must comprise all the ancient and
modern means of musical instrument making, whether acoustic or electronic,
with the help, for example, of digital-to-analogue converters; these have
already been used in communication studies by N. Guttman, J. R. Pierce,
and M. V. Mathews of Bell Telephone Laboratories in New Jersey. Now
these explorations necessitate impressive mathematical, logical, physical,
and psychological impedimenta, especially computers that accelerate the
mental processes necessary for clearing the way for new fields by providing
immediate experimental verifications at all stages of musical construction.

Music, by its very abstract nature, is the first of the arts to have at-
tempted the conciliation of artistic creation with scientific thought. Its
industrialization is inevitable and irreversible. Have we not already seen
attempts to industrialize serial and popular music by the Parisian team of
P. Barbaud, P. Blanchard, and Jeanine Charbonnier, as well as by the
musicological research of Hiller and Isaacson at the University of Illinois ?

In the preceding chapters we demonstrated some new areas of musical
creation: Poisson, Markov processes, musical games, the thesis of the mini-
mum of constraints, etc. They are all based on mathematics and especially
on the theory of probability. They therefore lend themselves to being
treated and explored by computers. The simplest and most meaningful
scheme is one of minimum constraints in composition, as exemplified by
Achorripsis.

Thanks to my friend Georges Boudouris of the C.N.R.S. I made the
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acquaintance of Jacques Barraud, Engineer of the Ecole des Mines, then
director of the Ensemble Electroniques de Gestion de la Société des Petroles
Shell-Berre, and Frangois Génuys, agrégé in mathematics, and head of the
Etudes Scientifiques Nouvelles at IBM-France. All three are scientists, yet
they consented to attempt an experiment which seemed at first far-fetched—
that of a marriage of music with one of the most powerful machines in the
world.

In most human relations it is rarely pure logical persuasion which is
important; usually the paramount consideration is material interest. Now
in this case it was not logic, much less self-interest, that arranged the be-
trothal, but purely experiment for experiment’s sake, or game for game’s
sake, that induced collaboration. Stochastically speaking, my venture should
have encountered failure. Yet the doors were opened, and at the end of a
year and a half of contacts and hard work “the most unusual event wit-
nessed by the firm or by this musical season [in Paris]” took place on 24
May 1962 at the headquarters of IBM-France. It was a live concert pre-
senting a work of stochastic instrumental music entitled ST[10-1, 080262,
which had been calculated on the IBM-7090. It was brilliantly performed
by the conductor C. Simonovic and his Ensemble de Musique Contem-
poraine de Paris. By its passagc through the machine, this work made
tangible a stochastic method of composition, that of the minimum of
constraints and rules.

Position of the Problem

The first working phase was the drawing up of the flow chart, i.e.,
writing down clearly and in order the stages of the operations of the scheme
of Achorripsis,* and adapting it to the machine structure. In the first chapter
we set out the entire synthetic method of this minimal structure. Since the
machine is an iterative apparatus and performs these iterations with extra-
ordinary speed, the thesis had to be broken down into a sequential series of
operations reiterated in loops. An excerpt from the first flow chart is shown
in Fig. V-1.

The statement of the thesis of Achorripsis receives its first machine-
oriented interpretation in the following manner:

1. The work consists of a succession of sequences or movements each a; seconds
long. Their durations are totally independent (asymmetric) but have a fixed
mean duration, which is introduced in the form of a parameter. These
durations and their stochastic succession are given by the formula

P, = ce~°da;. (See Appendix 1.)
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2. Definition of the mean density of the sounds during a,. During a sequence
sounds are emitted from several sonic sources. If the total number of these
sounds or points during a sequence is N, the mean density of this point-
cluster is N, /a; sounds/sec. In general, for a given instrumental ensemble
this density has limits that depend on the number of instrumentalists, the
nature of their instruments, and the technical difficulties of performance.
For a large orchestra the upper limit is of the order of 150 sounds/sec. The
lower limit (V3) isarbitrary and positive. We choose (V'3) = 0.11 sounds/sec.
Previous experiments led us to adopt a logarithmic progression for the
density sensation with a number between 2 and 3 as its base. We adopted
e = 2.71827. Thus the densities are included between (V'3)e® and (V3)eR
sounds/sec., which we can draw on a line graduated logarithmically (base ¢).2
As our purpose is total independence, we attribute to each of the sequences
a; calculated in 1. a density represented by a point drawn at random from
the portion of the line mentioned above. However a certain concern for
continuity leads us to temper the independence of the densities among
sequences 4;; to this end we introduce a certain “memory” from sequence
to sequence in the following manner:

Let a,_, be a sequence of duration a;_,, (DA),_, its density, and g, the
next sequence with duration «; and density (DA),. Density (DA), will be
given by the formula:

(D4), = (DA)t—ﬁ'ix,

in which x is a segment of line drawn at random from a line segment s of
length equal to (R — 0). The probability of x is given by

Px=2(1—f)dx
5

; (see Appendix I)

and finally,
N,, = (DA)

3. Composition Q of the orchestra during sequence a,. First the instruments
are divided into 7 classes of timbres, e.g., flutes and clarinets, oboes and
bassoons, brasses, bowed strings, pizzicati, col legno strokes, glissandj, wood,
skin, and metal percussion instruments, etc. (See the table for Atrées.) The
composition of the orchestra is stochastically conceived, i.e., the distribution
of the classes is not deterministic. Thus during a sequence of duration g it
may happen that we have 807, pizzicati, 10%, percussion, 7%, keyboard,
and 3%, flute class. Under actual conditions the determining factor which
would condition the composition of the orchestra is density. We therefore

aa

S ——
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Composition of the Orchestra for Atrées (ST/10-3,060962)
Timbre classes and instruments as on present input data

Class Timbre
1 Percussion
2 Horn
3 Flute
4 Clarinet
5 Glissando
6 Tremolo
or
flutter-
tongue
7 Plucked
strings
8 Struck
strings*
9 Vibraphone
10 Trumpet
11 Trombone
12 Bowed
strings
* col legno

Instrument

Temple-blocks
Tom-toms
Maracas
Susp. cymbal
Gong
French horn
Flute
Clarinet Bp
Bass clar. Bp
Violin
Cello
Trombone
Flute
Clarinet Bp
Bass clar. Bp
French horn
Trumpet
Trombone a
Trombone &
(pedal notes)
Violin
Cello
Violin
Cello
Violin
Cello
Vibraphone
Trumpet
Trombone a
Trombone b
(pedal notes)
Violin
Cello

Instrument No.

1—5
6—9
10
11
12

wI N WG W O R e L2 ORI e DD e e
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connect the orchestral composition with density by means of a special
diagram. An example from $7710-1, 080262 is shown in Fig. V-2,
Fig. V-2 is expressed by the formula =)

: ! go
Qf = (ﬂ. "= x) (en,r i eu-f-l.r) + 8y s o g "-4"0 (=L o3

o 2,20 993 g/ g /0 %
inwhichr = the number of the class, x = log[(DA),/(V3)],n = 0,1,2,...,R,
such thatn < x < n + 1, and ¢,, and ¢,, , , are the probabilities of class r
as a function of z. It goes without saying that the composition of this table I * 5 ae 20, 2,09 Jgap/ 0,s3 6.2

is a precise task of great complexity and delicacy. Once these preliminaries B
have been completed, we can define, one after the other, the N, sounds of
sequence a;.
4. Definition of the moment of occurrence of the sound N within the sequence a.
The mean density of the points or sounds to be distributed within a; is N 180\ g0 o o [gro] &10 .20 2.20

k = Ng[a,. The formula which gives the intervals separating the sound
} attacks is
| P, = ke~ * dt. (See Appendix 1I.)
w 2, 2,/0 o,/ o,/5 40 a,/0 o,/5 o,/0
r
1
1
l
|
'|

1 3. Attribution to the above sound of an instrument belonging to orchestra Q,
4 which has already been calculated. First class r is drawn at random with proba- //
| bility ¢, from the orchestra ensemble calculated in 3. (Consider an urn with
! . . . . .
| balls of T colors in various proportlon's.) Then from w1th_u.1 classr Ehc number 0,75 \gots /8 o .8 o, /% o, /8
| of t_hc Instrument is drawn according to the probability p, given by an &
! arbitrary table (urn with balls of n colors). Here also the distribution of
! instruments within a class is delicate and complex.
1 6. Attribution of a pitch as a function of the instrument. Taking as the zero
| point the lowest Bp of the piano, we establish a chromatic scale in semitones o 4420( 09 i .20 &2 —iia
! of about 85 degrees. The range s of each instrument is thus expressed by a
natural number (distance). But the pitch 4, of a sound is expressed by a
decimal number of which the whole number part is related to a note of the
chromatic scale within the instrument’s range. g o, /8 0,26 0,/4\ o/2| orz
Just as for the density in 2., we accept a certain memory of or dependence 902 g3
on the preceding pitch played by the same instrument, so that we have s i ) - - e > ®
i
hu =7 ku—»l + z -‘g g g g_, g g g ::
L b : B T e
where z is given by the probability formula 3 g -

P, = - ( 1 - %) dz. (See Appendix 1.)

) Fig. V-2. ST/10-1, 080262, Composition of the Orchestra

Density = (DA); = 0.11e%, U = log, (DA/0.11)

P, is the probability of the interval z taken at random from the range s, and




4
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|
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s is expressed as the difference between the highest and lowest pitches that
can be played on the instrument. '

7. Attribution of a glissando speed if class r is characterized as a glissando. The
homogeneity hypotheses in Chap. I led us to the formula .

10 = o e,

and by the transformation v/a = u to its homologue:
P o SN
Tu) = — f e~ du,
Ll e
for which there are tables. f(2) is the probability of octurrence of the speed »

(which is expressed in semitones/sec.); it has a parameter @, which is pro-
portional to the standard deviation 5 (a2 = s4/2).

a is defined as a function of the logarithm of the density of sequence a;

by: an inversely proportional function

§ \/-.-r(so L %’ L[(DA)J(VS)]),

or a directly proportional function

S vﬂ(lo % Q—IgL[(DA)i/(VS)]),
or a function independent of density

a = 17.7 + 35k,

where £ is a random number between 0 and 1.
The constants of the preceding formulae derive from the limits of the

speeds that string glissandi may take.
Thus for (DA); = 145 sounds/sec.
a = 53.2 semitones/sec.

25 = 75 semitones/sec.,
and for (DA); = 0.13 sounds/sec.

a = 17.7 semitones/sec.

25 = 25 semitones/sec.

8. Attribution of a duration x to the sounds emitted. To simplify we establish

a mean duration for each instrument, which is independent of tessitura and 1
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nuance. Consequently we reserve the right to modify it when transcribing
into traditional notation. The following is the list of constraints that we take
into account for the establishment of duration x:

G, the maximum length of respiration
or desired duration

(DA);, the density of the sequence

gr, the probability of class r

pn, the probability of the instrument n

Then if we define z as a parameter of a sound’s duration, z could be

inversely proportional to the probability of the occurrence of the
instrument, so that 1

2= DA)bug,

z will be at its maximum when (DA4);p,g, is at its minimum, and in this case
we could choose z,_,, = G.

Instead of letting z_,, = G, we shall establish a logarithmic law so as
to freeze the growth of z. This law applies for any given value of z.

2 =Ghlzllnz, .

Since we admit a total independence, the distribution of the durations
x will be Gaussian:

Sfx) =

e—(x—m)2/2:2
5 2T

where m is the arithmetic mean of the durations, s the standard deviation,
and
- m— 425 =0
m + 4.255 = 2’

the linear system which furnishes us with the constants m and s. By assuming

u = (x — m)[s4/2 we find the function T'(u), for which we consult the
tables.

Finally, the duration x of the sound will be given by the relation
x = tusy/2 + m.

We do not take into account incompatibilities between instruments, for
this would needlessly burden the machine’s program and calculation.

9. Attribution of dynamic forms to the sounds emitted. We define four zones
of mean intensities: ppp, p, f, f. Taken three at a time they yield 4° = 64
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permutations, of which 44 are different
pop </~ p.
10. The same operations ae 3,
11,

egun again for each sound of the cluster N
Recaleulations of the same

Sort are made for the other sequences,
An extract from the sequential statem

Now we must proceed to the transcription into Fortran
“understood” by the machine (see Fig. V-3).

S(x) dx = ce=ex gy,
How shall we proceed in

the probability £(x) dx? The machine can onl
with equiprobability between 0 and 1. We shall «
bility: Assume some length xy; then we have

prob. (0 < x < ;) = fxof(x) dr =1 — g-cz, _ F(x,),
0

where F(x,) is the distribution function of x. But

F(xy) = prob. (0 < Y < Yo) =y,
then

I — g% = Yo
and

f- _In(1 - 4)

for all x, > 0.

rtant phase, for it permits us to
€ program and determine the modalities of its opera-
tion. The final phase is the decoding of the results into traditional notation,
unless an automatic transcriber is available,

(an urn with 44 colors) ; for ckample,

ent was reproduced in F ig. V-1,
IV, a language.
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Table of the 44 Intensity Forms Derived from 4 Mean Intensity

Values, ppp. p. f, ff
#p pp

s AN b
PP ——pp ——ppp
p T
e e
P ———=) ——ppp
e e

f'"‘____‘_:::———————f’

Fo e i

W—d—"
e =
P 5 i
K e i
s S
f = =i
p—_—f—V
f T p—
JL .7f
;e e
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Conclusions

A large number of compositions of the same kind as ST|10-1, 080262

is possible for a large number of orchestral combinations. Other works have
already been written: S§T/48-1, 240162, for large orchestra, commissioned '

by RTF (France I1I); Atrées for ten soloists; and Morisma-Amorisima, for four 5

soloists.

Although this program gives a satisfactory solution to the minimal

structure, it is, however, necessary to Jump to the stage of pure composition
by coupling a digital-to-analogue converter to the computer. The numerical

calculations would then be changed into sound, whose internal organization

had been conceived beforehand. At this point one ¢ould bring to fruition
and generalize the concepts described in the preceding chapters.

The following are several of the advantages of using electronic compu-
ters in musical composition: "

1. The long laborious calculation made by hand is reduced to nothing.

The speed of a machine such as the IBM- 7090 is tremendous—of the order
of 500,000 elementary operations/sec.

2. Freed from tedious calculations the composer is able to devote him-
self to the general problems that the new musical form poses and to explore
the nooks and crannies of this form while modifying the values of the input
data. For example, he may test all instrumental combinations from soloists
to chamber orchestras, to large orchestras. With the aid of electronic com-
puters the composer becomes a sort of pilot: he presses the buttons, intro-
duces coordinates, and supervises the controls of a cosmic vessel sailing in
the space of sound, across sonic constellations and galaxies that he could
formerly glimpse only as a distant dream. Now he can explore them at his
ease, seated in an armchair.

3. The program, i.e., the list of sequential operations that constitute
the new musical form, is an objective manifestation of this form. The
program may consequently be dispatched to any point on the earth that
possesses computers of the appropriate type, and may be exploited by any
composer pilot.

4. Because of certain uncertainties introduced in the program, the
composer-pilot can instill his own personality in the sonic result he obtains.

Free Stochastic Music by Computer

Fig. V-3. Stochastic Music Rewritten in Fortran IV
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PROGRAM FREE STOCHASTIC MUSIC (FORTRAN [V)
GLOSSARY OF THE PRINCIPAL ABBREVIATIONS

N SECONDS
A — DURATION OF EACH SEQUENCE 1
AlQ+AZ0+A1T+A3S+A30 ~ NUMBERS FOR GLISSANDO CALCULATION

XEN
XEN
XEN

XEN
XEN

ALEA - PARAMETER USED TO ALTER THE RESULT OF A SECOND RUN WITH THEXEN

AME INPUT DATA
:LFEIEJ = THREE EXPRESSIONS ENTERING INTO THE THREE SPEED VALUES
SSANDI )
OF THE SLIDING TONES [ GLI
ALIM = MAXIMUM LIMIT OF SEQUENCE DURATION A e
(AMAX(T)+[=1+KTR) TABLE OF AN EXFRESSIOS ENTERING INTO
PART
ALCULATION OF THE NOTE LENGTH IN
;FL- DYNAMIC FORM NUMBER. THE LIST IS ESTABLISHED INDEPENDENTLY
OF THIS PROGRAM AND 15 SUBJECT TO MODIFICATION

XEN
XEN
MEN
XEN
XEN
XEN
XEN
XEN

DELTA = THE RECIPROCAL OF THE MEAN DENSITY OF SOUND EVENTS DURING :::
A SEQUENCE OF DURATION A
(E(T+J)s1=1+sKTRsJ=1+KTE) = PROBABILITIES OF THE KTR TIMBRE CkhSSES:E:
INTRODUCED AS INPUT DATAs DEPENDING ON THE CLASS NUMBER [=KR AND st
PF(U)=DA
N THE POWER J=U ORTAINED FROM y3#EX|
:PSI = EPSILON FOR ACCURACY IN CALCULATING PN AND E(l1s+J)sWHICH :E:
T IS ADVISABLE TO RETAIN
:GN(]oJ)I!lllKTR.J=]’KT5) = TABLE OF THE GIVEN LENGTH OF BREATH :::
FOR EACH [INSTRUMENT.: DEPENDING ON CLASS | AND INSTRUMENT J i
GTNA = GREATEST NUMBER OF NOTES IN THE SEQUENCE OF DURATION A e
GTNS = GREATEST NUMBER OF NOTES IN KW LOOPS o s
THAMING Lo J) s HAMAX (1o J) sHBMINT T o J) dHBMAX (T4 J) s Im] s KTReJ=] 4KTS) i
TABLE OF INSTRUMENT COMPASS LIMITSs DEPENDING ON TIMBRE CLASS [ xEN
AND INSTRUMENT J. TEST [NSTRUCTION 480 IN PART & DETERMINES s
WHETHER THE HA OR THE HB TABLE IS FOLLOWED. THE NUMBER 7 IS ol
ARBITRARY »
JW — ORDINAL NUMBER OF THE SEQUENCE COMPUTED. X::
KNL = NUMBER OF LINES PER PAGE OF THE PRINTED RESULT.KNL=S0 x

KR1 = NUMBER IN THE CLASS KR=1 USED FOR PFRCUSSION OR INSTRUMENTS
WITHOUT A DEFINITE PITCHs

XEMN
XEN

KTF = POWER OF THE EXPONENTIAL COEFFICIENT E SUCH THAT ig:
DAIMAX)=VI®(E*%®(KTE=1)) e
KTR = NUMBER CF TIMBRE CLASSES o
KW - MAXIMUM NUMBER OF JWw

KTEST1+TAVIETC - EXPRESSIONS USEFUL IN CALCULATING HOW LONG THE :::
VARIOUS PARTS OF THE PROGRAM WILL RUN,.

KT1 = ZERO IF THE PROGRAM [S SEING RUNs NONZERO DURING DEBUGGING XEN
KT2 = NUMBER OF LOOPSs EQUAL TO 15 BY ARBITRARY DEFINITIONS XE:
(MODI(IXB) s IXB=T4s1) AUXILIARY FUNCTION TO INTERPOLATE VALUES IN ::N
THE TETA(256) TABLE (SEE PART T)

MNA - NUMBER OF SOUNDS CALCULATED FOR THE SEQUENCE A(NA=DA#A) XE:
INTII)+1=1+KTR) NUMBER OF INSTRUMENTS ALLOCATED TO EACH OF THE ::~
KTR TIMBRE CLASSES.

(PNIT o) o [=14KTRJ=14KTS) s (IKTS=NT(1)41=1+KTR) TABLE OF DﬂoBaElLlTY:E:
OF EACH INSTRUMENT OF THE CLASS la.

(Q(1)+1=1KTR) PROBABILITIES OF THE KTR TIMBRE CLASSES. CONSIDEREDXEMN

AS LINEAR FUNCTIONS OF THE DENSITY DA.

(S(1)+1=1+KTR) SUM OF THE SUCCESSIVE G( 1) PROBABILITIESs USED TO
CHOOSE THE CLASS KR BY COMPARING IT TO A RANDOM NUMBER X1 (SEE
PART 3+ LOOF 380 AND PART S« LOOP 430},

SINA - SUM OF THE COMPUTED NOTES IN THE Jw CLOUDS NAs ALWAYS LESS
THAN GTNS ( SEE TEST IN PART 10 ).

S5QP] - SOQUARE ROOT OF Pl ( 3.14159s4ss)

TA = SOUND ATTACK TIME AACISSA.

TETA(256) - TABLE OF THE 256 VALUES OF THE INTEGRAL OF THE NORMAL
DISTRIBUTION CURVE WHICH IS5 USEFUL IN CALCULATING GLISSANDC SPEED

XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEMN
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AND SOUND EVENT DURATION.

VIGL - GLISSANDO SPEED (VITESSE GLISSANDO)s WHICH CAN VARY. AS, BE
INDEPENDENT OF+ OR VARY INVERSELY AS THE DENSITY OF THE SEQUENCE »

THE ACTUAL MODE OF VARIATION EMPLOYED REMAINING THE SAME FOR THE
ENTIRE SEQUENCE (SEF PART 7).

VITLIM - MAXIMUM LIMITING GLISSANDO SPEED (IN SEMITONES/SEC)
SUBJECT TO MODIFICATION.

V3 = MINIMUM CLOUD DENSITY DA

(Z1(1)+22(1)41=148) TABLE COMPLEMENTARY TO THE TETA TABLE.

READ CONSTANTS AND TABLES

DIMENSION GE12)+S(12)sE012412)+PNI12+50)+SPNI12¢50) sNT(12) 0

XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEM
XEN
XEN
XEN
XEN
XEN
XEN

FHAMIN{12+50) sHAMAX(12450) +sHBMIN(12+50) s HEBMAX {1 2450 ) sGNI 122507 s HI 1 2XEN

#2150 TETAI2SE) 4 VIGLI3) sMODT(TIZ1(B)+Z2(B1+ALFAII ] sAMAX(]12)

I=1

DO 10 IX=14+7
I1XA=8=1%
MODICIXA)I=T

10 1=1+1

READ 20+(TETA(1)s1=14256)

20 FORMATI(12F6+6)

READ 304(Z1(1)+Z2(1)+1=1+8)

30 FORMAT(6{F3e21F9:8)/F3.2:F94B1E6Ge2+F9.8)

40 FORMAT (%]

PRINT 40+TETA«Z1422
THE TETA TABLE = #*3/+21(12F10464/)2aF 10462/ 7/77 /s

XEN
XEM
XEN
XEMN
XEN
XEN
XEN
XEN
XEMN
XEN
XEN
XEN
MEMN
XEN
XEMN
XEM

%% THE Z1 TABLE = #+/37F6.2+E1243+///«% THE Z2 TABLE = #4/+BF 14,84/ XEN

*s1H1)
READ SO+DELTAsV3+A1041A20+A17+A30+A3S+BF +SAP T EPST sVITL IMsALEAS
*LIM

S0 FORMAT(F3a04F34345F3411F2e04FBe7+FBeBIFA.21FBeBiFS.2)

READ 60.KTI-KTQ.KU-KNL.KTQ-KTE.KR[uGTNAuGTNSoINTIIlu]e[.KTn}

&0 FORMATISI3+212+2F6.041212)

PRINT TO+DELTAV3+A10+A20+A17+A30+A35¢BF +SAP1+EPST+VITLIMeALEA S
FLIMIKT ] sKT24KWaKNL W KTRKTEsKRI s GTNASGTNS s ( CIaNT(I) ) o l=1+KTR)

70 FORMAT(#IDELTA = *4sF4.0e/0% V3 = #4FGe3a/e% AlQ = #eFlelarss
¥R A20 = #yFdelese® ALT = #4FQala/s* A30 = %¢Fdalarse¥ A3S = #4FaaleXEN

80

#/4% BF = ¥4F3,04/+% SOP] =%*.Fl1aB+/:% EPS] SR4F 1287 2% VITLIM =
*#aFSe2e/+% ALEA =%#4F12.8+/4% ALIM = o FBe21 /% KTl = #4134/

BE KT2 = #4130/ 4% KW = #4130/ 2% KNL = *4030/9% KTR = %4134/
% KTE = #e12¢/+% KR1 = #,0120/0% GTNA = %,FTa0r/ o ¥ GTNS = *4F 7404
®/4120% [N CLASS #.12+%. THERE ARE *212+% INSTRUMENTS.%4/))

READ BOWKTEST3+KTESTIWKTEST2

FORMAT(513)

PRINT 90+KTEST3+KTEST1+KTESTZ

FORMAT(* KTEST3 = #413./+% KTEST] = #.[3+/+% KTEST2 = *#413)

IF(KTEST3.NE.O) PRINT &30

R=KTE=1

A10=A10%5GPT

AZ0=AZ0#50P /R

A30=A30%5GP]

IF ALEA 1S NON-ZEROsTHE RANDOM NUMBER [S GENERATED FROM THE TIME
WHEN THE FOLLOWING INSTRUCTION 15 EXECUTED. IF ALEA [5 NON-ZERO
EACH RUN OF THIS PROGRAM WILL PRODUCE DIFFERENT OUTPUT DATA.
IFtALEASNED40) CALL RANFSETI(TIMEF(1))

XEN

AXEN

XEN
XEN
XEN
XEN

AXEMN

XEN
XEN

*XEN

XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN
XEN

67

69

70

71
T2
73
T4
5

76

78
T

8o

83

85

86
ar
aa
a9
S0
91
92
93
94
95
96
o7

100
11a
115
126
127
128
129
130
131
132
133
134
135
136
181
142
143
144
145
1486
187
148
149
150
151
152
153
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PRINT 830 :g:
DO 130 [=1.KTR =
¥=0a.0 i
KTS=NT(I)
READ 100+ (HAMINGT oJ) sHAMAX (T o J) «HBMIN( T o)) sHBMAX (T2 J) sGNNI T s J) s XEN
#PHI T+ ) s J=14KTS) KEN
100 FORMATIS(SF2.0«F343)) XEN
PRINT 1101t JeHAMINIT ¢ J) o HAMAX (1 5J) sHEBMINC [ +J) «HBMAX (1 o J) 4 GNI [« JIXEN
#ePNETad) 2 =1 +KTS) XEN

10 FORMAT(////+% IN CLASS NUMBER #.12:(/+* FOR INSTRUMENT MNO. #4012+ XEN
a 2% HAMIN = #3F3,0¢% sHAMAX = #F3.04%+HBMIN = #3F3.0+%HBMAX = #, XEN

# F.04%4GN = #4F3,0s%¢ AND PN = #,F5.3)) XEN
DO 120 J=1+KTS XEN
Y=Y+PNIT+J) XKEN
B iy S1) CALL EXIT :E:
130 IF (ABSF(Y=140)sGEEPSI) i

DO 150 I=1+KTR XEN

READ 1404(E(1+J)sJ=1+KTE) XEN
140 FORMAT{12F2.2) XEN
150 PRINT 1601+ (JsECTvJ) 0 J=1+KTE) XEN
160 FORMAT( A/ /777 % CLASS MUMBER #412+/+(% IN DENSITY LEVEL *.124 KEN

#% HAS A PROBABILITY OF ¥:F6+24+/)) XEN
DO 180 J=1.KTE XEN
Y=0a.0 XEN
DO 170 [=1+KTR XEN

170 Y=Y+E(l«J) XEN
180 IF (ABSFIY=1.0)«GE+EPS51) CALL EXIT XEN
DO P00 I=1KTR XEN
AMAX(T1=10/E(1+1) XEN
00 200 J=2:KTE XEN
Ad=J=1 XEM
AX=1+0/(E(T+ ) REXPF(AJ)) XEN
IF (KT1«NE.D) PRINT 190:AX XEN
150 FORMAT(IH +9E12.8) XEMN
200 IF (AX«GT«AMAX(I)) AMAX(I)1=AX XEM
IF (KT1«NE«.O)1 PRINT 210+AMAX XEM
210 FORMAT( 1H +9E12.8) XEMN
XEMN
Jw=1 XEMN
SINA=0.0 XEN
IF (KTEST1«NEQO) TAVI=TIMEF(1) XEN
220 NLINE=S0 XEMN
XEN
PARTS 1 AND 2+ DEFINE SEQUENCE A SECONDS AND CLOUD NA DURING A KE:

XE
KNA=0O XEN
Kl=0 XEN
230 X1=RANFI(~1) XEN
A=-DELTA # LOGF(X1) XEN
IFtALE.ALIM) GO TO 250 XEMN
IF (K1.GE.KT2) GO TO 240 XEN
Kl=Kl+1 XEN
GO TO 230 XEMN
240 A=ALIMA2.,0 XEN
X1=0,0 XEN
250 K2=0 XEN
260 X2=RANF(=-1) XEN
IF (JW.GTs1) GO TO 280 XEM
270 UX=R*#X2 XKEN
GO TO 310 XEN
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160
161
162
163
164
165
166
167
168
169
170
1T
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
20R
209
210
211
212
213
214
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280 IF (RANF(=1)+GEs0s5) GO TO 290 XEN XEN 276
UXsUPR + R * (140-SORTF(X2)) XEN 218 & PART S.DEFINE CLASS AND INSTRUMENT NUMBER TO EACH POINT OF A XEN 277 .
GO TO 300 : XEN 21% e XEN 278 [
L 290 UX=UPR - R # ( 1.,0-S0RTF(X2)) 2 XEN 218 c i =RANEC=13 XEN 279 |
300 IF ((UXsGE+D0eD)eANDe (UX'LE.R)) GO TO 310 XEN 219 DO 430 I=1+KTR XEN 280
IF (K2.GE+KT2) GO TO 270 XEN 220 430 IF (X1sLEe«S(1)) GO TO 440 XEN 281
! K2=K241 XEN 221 1=KTR XEN 282
GO TO 260 XEN 223 440 KTS=NT(1) XEN 283
310 U=ux XEN 223 KR=1 XEN 284
DA=V3 #* EXPF(U) XEN 224 X2=RANF (~1) XEN 285
NA=XINTF(A % DA + 0.5) + 1 XEN 225 DO 4S0 J=14KTS XEN 286
IF (GTNA.GT.FLOATF(NA)) GO TO 330 XEN 226 SPIEN=SPNI(KR«J) XEN 287
| IF (KNALGE.KTZ) GO TO 320 XEN 227 INSTRM=J XEN 288
KNA=KNA+1 XEN 228 450 IF (X2.,LE«SPIEN) GO TO 460 XEN 289
GO To 230 XEN 229 INSTRM=KTS XEN 290
| 320 A=DELTA XEN 230 460 PIEN=PNIKR INSTRM) XEN 291
GO TO 260 XEN 2318 IF (KT14NE<O) PRINT 4704X1+S(KR) +KRsX2+5P [EN+INSTRM XEN 292
330 UPR=U XEN 232 470 FORMAT( IH +2E20.8¢16+2E20.8416 ) XEN 293
IF (KT1.EQ.0) GO TO 360 XEN 233 c XEN 294
PRINT 340+JWeKNAIKIsK24X1 X2 4AsDANA XEN 234 c PART &+DEFINE PITCH HN FOR EACH POINT OF SEQUENCE A XEN 295
340 FORMATIIHL+41B+3X+4E1B.8+3Xs 18) XEN 235 c XEN 296
NA=KT1 XEN 236 IF (KR«GT«1) GO TO 480 XEN 297
| IF (KTEST3.NE.O) PRINT 350+JWsNAsA XEN IF (INSTRM.GE.KR1) GO TO 490 XEN 298
} 350 FORMAT(IHOL219:F1N.2) XEN HX=040 XEN 299
I c : XEN ; GO TO =m&0 XEN 300
l & PART 3+ DEFINE CONSTITUTION OF ORCHESTRA DURING SEQUENCE A XEN 240 480 IF (KR4LT«7) GO TO 490 XEN 301
{ c HEN | o9 HSUP=HBMAX (KR + TNSTRM ) XEN 302
360 SINA=SIMA + FLOATF(NA) XEN HINF=HBMIN (KR INSTRM) XEN 303
i XLOGDA=U sicaly GO TO S00 XEN 304 |
iy XALOG=A20 *XLOGDA XEN 490 HSUP=HAMAX (KR INSTRM) XEN 305 |
| M=XINTF ( XLOGDA ) XEN 245 HINE=HAMIN{KR + INSTRM) XEN 306
i IF ((M+2).GT+KTE) M=KTE-2 XEN 245 500 HM=HSUP-HINF XEN 307
SR=040 XEN | 2eUN HPR=H (KR« INSTRM) XEN 308 '
| MI=M+1 XEN 248 plsa XEN 309
! M2=M+2 XEN  ZhHly IF (HPR.LE.0.0) GO TO 520 XEN 310
} DO 380 [=1+KTR XEN 250 510 XePANF (=11 XEN 311
ALFX=E(TsM1) XEN 251 IF (NeGT41) GO TO 530 XEN 312
I ' BETARE (1 aM2) HEW T aE 520 HX=HINF+HM®X RANF (=1 ) XEN 313
i XM=M XEN 253 GO TO =60 XEN 31a
| OR=(XLOGDA-XM) * (BETA-ALFX) + ALFX XEN 254 530 IF (RANF(=1)+GEs0s5) GO TO 540 XEN 315
i3 IF (KT1sME«0) PRINT 370.XMsALFX4BETA XEN 255 HX=HPR4HM % ( | .0-SORTF(X)) XEN 316
|| 370 FORMAT(IH «3F20.8) XEN 256 GO TO S50 XEN 317
1 L 08 Bt ACN 3 540 HX=HPR-MM % (1.,0-SGRTF(X)) XEN 318
‘-. SRESREGR XEN Eou SS0 1F((HXeGE+HINF) s ANDs (HX(LEsHSUP)) GO TO S60 XEN 319
i 380 St1)=5R XEN 2o IF (K+GE.KT2) GO TO 520 XEN 320
k IF (KT1.NE«0O) PRINT 390+ (Q11)+I=1sKTR)I+(S(1)+1=1+KTR) XEN 260 KK+l XEN 321 |
1 390 FORMAT(1H +12F944) XEN 261 0 TO %510 XEN 322 |
| < XEN. 2628 S60 HIKRs INSTRM) =HX XEN 323 |
) c PART &4+DEFINE INSTANT TA OF EACH POINT IN SEQUENCE A XEN 263 1F (KT14NEWD) PRINT S704KsXeHX XEN 324
i c XEN  Zoi 570 FORMAT(IH «1642E20.8) XEN 325 ;
IF (KTEST2.NE.0) TAV2=TIMEF(1) XEN 265 e XEN 326
| N=1 EN S c PART T7.DEFINE SPEED VIGL TO EACH POINT OF A XEN 327
} | T=0.0 XEN 267 % c XEN 328
il TA=0,0 XEN 268 IF (KR4EQ.5) GO TO S80 XEN 329
']Ii | GO TO a10 XEN 269 VIGL(1)=040 XEN 330
Wil 400 N=N+1 XEN 270 VIGL(2)=040 XEN 331
-.)' X=RANF(~1) XEN 271 VIGL(3)=0.0 XEN 332 '
! T==LOGF (X) /DA XEN 272 %X1=040 XEN 333
! TA=TA+T XEN 273 s XEN  33a
il 410 IF (KT1.NE«O) PRINT 420+sNeXeT+TA XEN 274 XL AMBO B0+ 0 XEN 335 I
i‘ 420 FORMAT(//+1B43E2048) XEN 275 | GO TO 740 XEN 336 |
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580 -X=1
590 X1=RANF(=-1)
IF (X1=0.999T7) 600+650+.680
600 I=128
DO 630 IX=1+7
IF(TETACI)=X1) &10+840+620
610 I=1+MODI(IX)
GO TO &30
620 1=[=MODICIX)
630 CONTINUE
IF(TETA(II=X1) BT0+640+660
640 XLAMBDA=FLOATF(I1-1)-/100,0
GO TO (720.760)4 KX
650 XLAMBDA=2,.55
GO TO (720+760)+KX
660 [=1-1
670 TX1=TETA(I1)
XLAMBDA=(FLOATF (=114 (X1=TX1)A(TETAL1+1)1=TX13)/100.0
GO TO ( T20+760 Y« KX
680 DO 690 [=2.7
TX1=Z2¢(1)
IFIX1=TX1) 700+710.690
690 CONTINUE
=8
TX1=1e0
TOO0 TX2=Z1(1)
XLAMBDA=TX2=( ( TX1=X1)/(TXI=Z2( 1)) ) ¥{TX2=Z1(1=1))
GO TO ( 720760 )+ KX
TI0 XLAMBDA=Z1(1)
GO TOt 7204760 )+ KX
720 ALFA(1)=A10+XALOG
ALFAL3)=A30-XALOG
X2=RANF(-1)
ALFA(2)=A1T+AISH#X2
DO 730 1=143
VIGLIII=INTF(ALFAL ) *XLAMBDA+0,5)
IF (VIGL(1)LT4040) VIGLII)==VIGL(T)
IF (VIGLII)«GTaVITLIM) VIGL(I)=VITLIM
730 IF (RANF(=1)sLTeDeS) VIGLII)==VIGLII)
Ta0 IF(KT14NELO) PRINT TS0 X1+ X2+ XLAMBDA +VIGL
TS0 FORMAT(IH +6E19.8)

PART B+.DEFINE DURATION FOR EACH POINT OF A

0o n

IF ((KR<EQs7)s0R4 (KR4FOaB)) GO TO 780
ZMAX=AMAX(KR) FIVIXPIEN)
G=GNIKRs INSTRM)
RO=G/LOGF ({ ZMAX )
GPNDA=1+0/(QIKR)#PIEN*DA)
GE=ABSF (RO®LOGF (QPNDA) )
AMU=GE/2.0
SIGMA=GE /4.0
KX=p
GO TO 590

T60 TAU=SIGMA*XLAMBDA®].4142
X2=RANF(-1)
IF (X24GE«0s5) GO TO 770
XDUR=XMU+TAU
GO TO 790

TT70 XDUR=XMU-TAU
IF (XDUR.GE+D.0) GO TO 790
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760 IF(KT1«NELOIPRINT BO0+ ZMAX + XMU+ ST1GMA + X1 + XL AMBODA + X2+ XDU -

800 FORMAT(IH +SE15+8+E11+4+E15.8) -

PART 9+.DEFINE INTENSITY FORM TO EACH POINT OF A :g:

IFORM=XINTF(RANF (=1) #*BF +0+5) XEN

IF (KT1.EQ.Q) GO TO B840 XEN

IF (NLINE.LT4KNL) GO TO 810 XEN

IF (NLINE.EQ.KNL) GO TO 820 XEN

NLINE=1 XEMN

GD To 900 XEMN

810 NLINE=NLINE+] XEN

GO TO 900 XEM

p20 PRINT B30 XEN

B30 FORMAT(1H1) :E:
NL INE=D

GO TO 900 XEN

a0 IF (NLINEsGE<KNL) GO TO B850 XEN

ML INE=NL INE+1 XEMN

GO To 880 HEN

850 PRINT B60+JWeAsNA(GIT)sI=14KTR) XEN

860 FORMAT(¥] IW=® e [TaaX s HA=R sFBaP s AN #NA= R, [ 644X HFA([I=*212(Faa24 %/ %¥XEN

#1222 XEN

PRINT 870 XEN

870 FORMAT(6X+#N%,8)X s #START# 15X+ ¥CLASS* 14X+ ¥ INSTRM# 44 X4 ¥PITCH* 16X+ HEN

#RGLISSI*+aX s #GLISS2% 14X *GLISSI* 48X+ ¥DURATION¥ 4 SX 4 #DYNAME ) XEMN

NLINE=1 XKEN

880 PRINT BO0NsTAKR INSTRMHXs (VIGLII)41=1431+XDUR IFORM XEN

850 FORMAT(IH s I7+F1222+19+184F11a14F134142F10a1.F14424111) xEN

XEN

PART 10+REPEAT SAME DEFINITIONS FOR ALL POINTS OF A XEN

XEN

XEN

900 IF [NsLTe«NA) GO TO 400 i

PART 11+ REPEAT SEQUENCES A XEM

XEN

IF (KTESTZ2.EQ.0) 60 TO 910 XEMN

TAP2=TIMEF(1)=-TAV2 XEN

TAP2=TAP2/FLOATF (NA) XEN

PRINT 750.TAPZ XEN

XEN

910 IF (JW.GE.KW) GO TO 930 KEN

020 JWsJW+] XEN

IF (GTNS.GT.SINA) GO TO 220 XEN

930 IF (KTFST1.EQ.0) CALL FXIT HEN

940 TAPI=TIMEF(-1)=TAV] XEN

TAP1=TAP| /FLOATF (KW} XEN

PRINT 7S0.TAP1 XEN

XEN

XEN

END

DATA FOR ATREFS (ST/10-3. 060962}

gﬂﬂﬂnﬂﬂtIJﬂnﬂ?26ﬂn033900ﬂ451ﬂﬁﬂﬁﬁdﬂﬂﬁﬁ?ﬁOﬂﬂTB?ﬁPFQUl0010[300]12500123600
13480014590015690016800017900019000020090021 1800222700233500244300255000
26570027630028690029 740030790031 8300328600338900349100359300369400379400
3893003992004090004 18700428400438000447500456900466200475500484700423700
502?0051lTOOEZ05005292UD53?9005&ﬁ§0055490056330057]6005798005&?900595900
60390061 170061940062 TNONE346N064 2000649400656600663800670800677B00684700
69140C69R100TOATONTI120NTI TSO0T23R800T7I0000TI&EINNTA2100TABONCTSIBONTSISNO
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3 e 1 A= 9,132 NA= 55

4/0.06/0.06/C.03/
76510077070077610078140078670079180079690080190080680081 160081630082 Q(1)=0.12/0+04/0.04/0.05/0.12/0.29/0.04/0.04/0.1 -

8254008299008342008385008427008468008508008548908586008624 00866100869
8733008768008802008835008868008900008931008961008991 0090200090480090 7
91030091300091550091810092050092290092520 09275009297009319009340009361
93810094000094 190094380094‘57009473009490009507009523009538009550009

958300959700961 100962400963700964900966 1 0096730096840096950097060097 16
97260097360097450097550097630097 72009780009 7880 NI796N0980400981 10098
9825009832009R838009A44NN9ASCONSASE0098E | 00986 T7NNOBT72009R770098820098

N START CLASS INSTRM PITCH GLISS1 GLISS2 GLISS3 DURATION DYNAM

a.66 | FUUR 34.0 0.0 0.0 0.0 .00 ;3,
28910098950098990099030099070099110099150099180N992200992500992800993, i 8 0 10 1 43,2 0.0 0.0 0.0 N.41 5
993400993700993900994200994400994700994900995 1 00995300995500995 70099 2 0.1 6 8 81.3 0.0 n.0 0.0 N.63 21
99610099630099640099660099670099690099700099720099730099740099 750099 3 0.11 T.C! 9.0 0.0 0.0 n.18 10
99770099790099 7960998050998 1 40998230998 3209964009984 8099855009862099 3 0.13 6 3 47 0.0 c'o 0.0 1.90 29
9987409988009988509989 109989609990 109990609991009991 40999 | 80999230999, 5 0.18 1 4 0.0 a. x v n 51 35
9993009993409993709994009994409994 70999500959953099956099958099960099 & 0.25 9 1 48.7 9.0 0.0 0.0 0' 37 %2
9996509996 70999690999700 7 0.33 6 7 11.4 0.0 0.0 0.0 . 61
25509937000026309998000027509999000031309999900034609999990037709999 0.34 g 1 38.1 0.0 0.0 0.0 n.oo
4060999999951 00E 30100000000 e &40 1 1 0.0 0.0 0.0 0.0 1 2520 45
0400501002001773003556317724539010000007100000000001 2000 By ¢ 9 55.0 n.0 0.0 0.0 1.07 0
0000150500500120720001600025000120101020309020201 010202 10 2°f;é ‘ 3 11.5 0.0 0.0 0.0 0.40 7
11 Lo 0. 19
01010000100700101000010090010100001012001010000101100101000010090 1z .90 8 2 23.2 9.0 0.0 0.3 0 gg 6
01010000101200101000010080010100001008001010000101200101000010080 §7 1.00 7 2 26.9 0.0 0.0 0. n'az 57
01010000150200101000020020 14 1.09 1c 1 4642 0.0 N.0 0.0 . 25
1755000010999 y £ 1.09 6 2 68.5 0.0 0.0 0.0 0.71
3975000015999 : 31,93 & 3 46.9 0.0 0.0 0.0 N.64 32
29710000206001754000010400 1€ 1. % 1 44.0 0.0 c.n 0.0 0D.44 1
34850000154001563000015400 1953000010200 17 1.42 T 0.0 0.0 0.0 0.22 21
3975000015150297100001009017540000070901 75500001 00903363000010090 b 18 1.57 1¢ 1 36. . .0 0-0 o 13
1953000010070101300001020034850000152001563000015020 | 1S 1l.65 4 2 32.5 0.0 c. " 0,06 60
00003467005000000154800500 i 20 1.78 € 8 T2.6 0.0 0.0 0.0 0.55 a0
00003467005000000154800500 21 1.92 & 3 38.9 0.0 Q.0 0.0 '-‘- 62
N000326810999 22 1.94 5 1 T&. 6 T1.00 =280 ~71.0 N.80
0000336310999 S 2.18 4 1 32.6 0.0 0.0 0.0 1.50 50
00001953108000000101307200 22 c. & 6 50.9 0.0 0.0 0.0 0.60 26
00003487155000000157215500 £ 200 . 0.0 0.0 0.0  4.58 24
25080408011309 2t Z.19 105 B 0.0 ® " .D 0.02 58
08071602010110 26 2.20 S 1 49.3 0.0 e.0 Q. 0.22 13
03030420010110 i 271 2.23 3 1 24eB o qes Rel .00 43
02050325010112 I 28 2.32 ) 1 36.9 0.0 f.0 0.0 0. 4 5
03350315011505 ' 26 2.33 4 1 31.8 0.0 0.0 0.0 1.3 4
02100302103907 S0 2.54 1 6 0.0 0.0 0.0 0.0 N.28
02020203150707 31 2.57 .11 2 12.2 0.0 0.0 0.0 1.65 40
02020202410207 2! il 1 48.5 0.0 éla 8 B 55
03090317041609 Sf L 0.0 0.0 0.0 1.50 58
03132003200509 33 2.80 1 2 A0 7 = s 0.52 21
02052801030409 ] 34 2.28 5 2 15.4 49.0 5.0 -31.0 s 5
45011202020106 / as 3,33 1 7 0.0 0.0 0.0 0.0 .0 X
" 3t 3.38 TS e [ITATES S TE B SR iR RS EAE S 12
37 3.8 (THG | oE e Rl T Be By RSO IR | S o
40 3.64 12 2 5242 0.0 0.0 0.0 0.83 28
4] 3.65 € 5 59.0 0.0 .0 n.0 . t
! 38.8  25.0 2,0 -1i5.0 0.CC
! 42 3,11 5 3 . N.43 17
It l a3 .80 &V ILe 75.6 0.0 0.0 0.0 5 57
' d 51.5 0.0 C.0 0.0 0.77
‘ , &4 3000 8 8 0.39 2 .
45 3,89 € 7 12.1 0.0 C.0 0.0 ¢ . : |
" RO 80.3 36,0 4.0  22.0 o'fo 4
A8 428, 094N 1Y 59.9 0.0 0.0 0.0 il =
| 49 4,31 12 4 40,1 0.0 0.0 0.0 L 34 |
50 4.33 1 10 0.0 2.0 c.0 0.0 0D.46

] Fig. V-4. Provisional Results of One Phase of the Analysis
l |
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Let there be a sonic event which is not endless. It is seen as a whole, as

..*)
g
y ;., Here we shall attack the thorny problem of the logic underlying musical
- I [ o composition. Logic, that queen of knowledge, monopolized by mathematics,
[ ] i i ‘1: wavers between her own name, borne through two millennia, and the name
~ | 5 ; of algebra.
|| B‘ il W i e 1;: Let us leave the task of logically connecting the preceding chapters
oL 1 i ' ot for the moment. We shall confine ourselves to following a path which
1& i . jl il ‘:" A may lead us to regions even more harmonious in the not too distant future.
JCy il
- 2 e .".L N | !"— g g "'h T e
A 1 | 1] m APl i AR e A LOGICAL AND ALGEBRAIC SKETCH OF
" ‘ WL @ I"i:_ : MUSICAL COMPOSITION
I 1N Lo miﬂr e ?' pe rﬂr% -\ o In this chapter we shall begin by imagining that we are suffering from
a2\ MM “-E A "« B el ""‘j 1% {‘ Ml & 8 a sudden amnesia. We shall thus be able to reascend to the fountain-head
L i e (WM 1 l“‘ L l': 3§ ol éas of the mental operations used in composition and attempt to extricate the
| R:,ﬁ;!:."l- " l‘ * S ST * 4] -~ general principles that are valid for all sorts of music. We shall not make a
il | Ralr || n -[ 3 oLl d psycho-physiological study of perception, but shall simply try to understand
] sttrbh = T TG ] » o | [13]all e FrTe . . |
. L li;’f‘ I t s 1y S more cl.earl)_f the phenqmenon c'yf hearing and the thought-processes involved
il 3o i LW [ = when listening to music. In this way we hope to forge a tool for the better
1 ) i’- 1 | 0 comprehension of the works of the past and for the construction of new
b $ I" 1|2 T Ep - music. We shall therefore be obliged to collect, cut up, and solder scattered
| r. h[ 4 ‘:‘ g as well as organized entities and conceptions, while unraveling the thin
) 3_ L‘ L | - thread of a logic, which will certainly present lacunae, but which will at
l " [_r E _ E least have the merit of existing.
o s £ |
t - _.\ : !r-; i E J CASE OF A SINGLE GENERIC ELEMENT :
‘_2, x £ -+, :.L&. \ |
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an entity, and this overall perception is sufficient for the moment. Because

of our amnesia, we decide that it is neuter—neither pleasant nor unpleasant.
Postulate. We shall systematically refuse a qualitative judgment on

every sonic event. What will count will be the abstract relations within the
event or between several events, and the logical operations which may be

imposed on them. The emission of the sonic event is thus a kind of statement,
inscription, or sonic symbol, which may be notated graphically by the
letter a.

Ifit is emitted once it means nothing more than a single existence which

appears and then disappears; we simply have a.

Ifit is emitted several times in succession, the events are compared and
we conclude that they are identical, and no more. Identity and tautology
are therefore implied by a repetition. But simultaneously another phe-
nomenon, subjacent to the first, is created by reason of this very repetition:
modulation of time. If the event were a Morse sound, the temporal abscissa
would take a meaning external to the sound and independent of it. In addi-
tion to the deduction of tautology, then, repetition causes the appearance
of a new phenomenon, which is inscribed in time and which modulates time.

To summarize: If no account is taken of the temporal element, then a
single sonic event signifies only its statement. The sign, the symbol, the
generic element a have been stated. A sonic event actually or mentally
repeated signifies only an identity, a tautology:

avVavava---Va=a.

V is an operator that means “put side by side without regard to time.”
The = sign means that it is the same thing. This is all that can be done with
a single sonic event.

CASE OF TWO OR MORE GENERIC ELEMENTS

Let there be two sonic events ¢ and b such that a is not identical with &,
and such that the two are distinct and easily recognizable, like the letters
a and b, for example, which are only confused by a near-sighted person or
when they are poorly written.

If no account is taken of the temporal element, then the two elements
are considered as a pair. Consequently emitting first 2 then b, or first b
then g, gives us no more information about these distinct events than when
they are heard in isolation after long intervals of silence. And since no
account is taken of the relation of similitude or of the time factor, we can
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write for @ # b
aNv b =bve

which means that a and & side by side do not create a new thing, having the
same meaning as before. Therefore a commutative law exists.

In the case of three distinguishable events, a, b, ¢, a combination of two
of these sonic symbols may be considered as forming another element, an
entity in relation to the third:

(a v b)ve.
But since this associational operation produces nothing more we may write
(@avd)ve=av (bvo).

This is an associative law.

The exclusion of the time factor leads therefore to two rules of compo-
sition outside-time—the commutative and the associative. (These two rules
are extensible to the case of a single event.)

On the other hand, when the manifestations of the generic events
a, b, ¢ are considered in time, then commutativity may no longer be accepted.

Thus
aTbi#bT 4

T being the symbol of the law of composition which means “anterior to.”
This asymmetry is the result of our traditional experience, of our cus-

tomary one-to-one correspondence between events and time instants. It
is raised when we consider time by itself without events, and the conse-
quent metric time which admits both the commutative and the associative
properties:

aTb=5bTa commutative law

(2Td) Te=aT (bTe) associative law.

CONCEPT OF DISTANCE (INTERVAL)

The consideration of generic elements a, b, ¢, . . . as entities does not
permit much of an advance. To exploit and clarify what has just been said,
we must penetrate the internal organization of the sonic symbols.

Every sonic event is perceived as a set of qualities that is modified dur-
ing its life. On a primary level we perceive pitch, duration, timbre, attack,
rugosity, etc. On another level we may distinguish complexities, degrees of
order, variabilities, densities, homogeneities, fluctuations, thicknesses, etc.
Our study will not attempt to elucidate these questions, which are not only
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difficult but at this moment secondary. They are also secondary because
many of the qualities may be graduated, even if only broadly, and may be
totally ordered. We shall therefore choose one quality and what will be
said about it will be extensible to others. :

Let us, then, consider a series of events discernible solely by pitch, such
as is perceived by an observer who has lost his memory. Two elements, a, b,
are not enough for him to create the notion of distance or interval. We must
look for a third term, ¢, in order that the observer may, by successive com-
parisons and through his immediate sensations, form first, the concept of
relative size (b compared to a and ¢), which is a primary expression of rank-
ing; and then the notion of distance, of interval. This mental toil will end
in the totally ordered classification not only of pitches, but also of melodic
intervals. Given the set of pitch intervals

H = (km by hgs < ')
and the binary relation § (greater than or equal to), we have

L. ASh for all h € H, hence reflexivity;
2. hoShy # hySh, except for k, = h,, hence antisymmetry;
3. hySh, and h,Sh, entail £,Sh,, hence transitivity.

Thus the different aspects of the sensations produced by sonic events
may eventually totally or partially constitute ordered sets according to the
unit interval adopted. For example, if we adopted as the unit interval of
pitch, not the relationship of the semitone (= 1.059) but a relationship of
1.00001, then the sets of pitches and intervals would be very vague and
would not be totally ordered because the differential sensitivity of the human
ear is inferior to this relationship. Generally for a sufficiently large unit
distance, many of the qualities of sonic events can be totally ordered.

To conform with a first-degree acoustic experience, we shall suppose
that the ultimate aspects of sonic events are frequency! (experienced as
pitch), intensity, and duration, and that every sonic event may be constructed
from these three when duly interwoven. In this case the number three is

irreducible. For other assumptions on the microstructure of sonic events see
the Preface and Chapter IX.

Structure of the Qualities of Sonic Events*

From a naive musical practice we have defined the concept of interval
or distance. Now let us examine sets of intervals which are in fact isomorphic
to the equivalence classes of the N x N product set of natural numbers.
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1. Let there be a set H of pitch intervals (melodic). The law of internal
composition states that to every couple (k,, b, € H) a thi]f‘d element may be
made to correspond. This is the composite of , by &,, which we shall notate
hy + hy = he, such that h. € H. For example, let there be thrcx:: sounds
characterized by the pitches I, II, I1I, and let kg 1), Ag1, 1) bE tht'f intervals
in semitones separating the couples (I, II) and (II, III), respectively. The
interval A 11, separating sound I and sound ITI will be equal to the sum of
the semitones of the other two. We may therefore establish that the law of
internal composition for conjuncted intervals is addition.

2. The law is associative:
hy + (hy + he) = (kg + hy) + he = hg + by + K.
3. There exists a neutral element %, such that for every A, € H,
ho + by = hy + hy = k.

For pitch the neutral element has a name, unison, or the zero interval; for
intensity the zero interval is nameless; and for duration it is simultaneity.
4. For every h, there exists a special element A;, called the inverse, such

that
o= b= k=0,

Corresponding to an ascending melodic interval A,, there may be a descend-
ing interval A, which returns to the unison; to an increasing l.ntf:r.val_ of
intensity (expressed in positive decibels) may be added another diminishing
interval (in negative db), such that it cancels the other’s effect; correspond-
ing to a positive time interval there may be a negative duration, such that
the sum of the two is zero, or simultaneity.

5. The law is commutative:

h“+bb=bb+kﬂ'

* Following Peano, we may state an axiomatics of pitch and construct the chro-
matic or whole-tone scale by means of three primary terms—origin, note, and the
successor of . ..—and five primary propositions:

1. the origin is a note;

2. the successor of a note is a note;

3. notes having the same successor are identical;

4. the origin is not the successor of any note; and ) ) !

5. if a property applies to the origin, and if wh:sn it appl.u:s to any note it also
applies to its successor, then it applies to all notes (principal of induction).

See also Chap. VII, p. 194.
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These five axioms have been established for pitch, outside-time. Bug
the examples have extended them to the two other fundamental factors ""
sonic events, and we may state that the sets / (pitch intervals), G (intensity
intervals), and U (durations) are furnished with an Abelian additive group
structure. ]

To specify properly the difference and the relationship that exists
between the temporal set 7" and the other sets examined outside- tlmef,
and in order not to confuse, for example, set U (durations characterizing a
sonic event) with the time intervals chronologically separatmg sonic.
events belonging to set 7, we shall summarize the successive stages of our
comprehension.

SUMMARY

Let there be three events a, b, ¢ emitted successively.

First stage: Three events are distinguished, and that is all.

Second stage: A “temporal succession” is distinguished, i.e., a corre-
spondence between events and moments. There results from this

a before b # b before ¢ (non-commutativity),

Third stage: Three sonic events are distinguished which divide time into
two sections within the events. These two sections may be compared and then
expressed in multlples of a unit. Time becomes metric and the sectlons
constitute generic elements of set 7. They thus enjoy commutativity.

According to Piaget, the concept of time among children passes through -
these three phases (see Bibliography for Chapter VI).

Fourth stage: Three sonic events are distinguished; the time mtcrvals
are distinguished; and independence between the sonic events and the
time intervals is recognized. An algebra outside-time is thus admitted for sonic
events, and a secondary ‘emporal algebra exists for temporal intervals; the |
two algebras are otherwise identical. (It is useless to repeat the arguments
in order to show that the temporal intervals between the events constitute
a set 7, which is furnished with an Abelian additive group structure.)
Finally, one-to-one correspondences are admitted between algebraic func-
tions outside-time and temporal algebraic functions. They may constitute
an algebra in-time. _

In conclusion, most musical analysis and construction may be based on:
1. the study of an entity, the sonic event, which, according to our temporary
assumption groups three characteristics, pitch, intensity, and duration, and
which possesses a structure outside-time;; 2. the study of another simpler entity,
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time, which possesses a temporal structure; and 3. the correspondence between
the structure outside-time and the temporal structure: the structure in-time.

Vector Space

Sets H (melodic intervals), G (intensity intervals), U (time intervals),
and T (intervals of time separating the sonic events, and independent of
them) are totally ordered. We also assume that they may be isomorphic
under certain conditions with set R of the real numbers, and that an external
law of composition for each of them may be established with set R. For every
ac E (E is any one of the above sets) and for every element 4 € R, there
exists an element b = Aa such that b € E. For another approach to vector
space, see the discussion of sets of intervals as a product of a group times a
field, Chap. VIII, p. 210,

Let X be a sequence of three numbers x;, x,, X3, corresponding to the
elements of the sets H, G, U, respectively, and arranged in a certain order:
X = (x;, x5, x5). This sequence is a vector and x;, x,, x5 are its components.
The particular case of the vector in which all the components are zero is a
zero vector, 0. It may also be called the origin of the coordinates, and by
analogy with elementary geometry, the vector with the numbers (x;, x5, x3)
as components will be called point M of coordinates (x,, x5, ¥3). Two points
or vectors are said to be equal if they are defined by the same sequence:
X =Y

The set of these sequences constitutes a vector space in three dimensions,
E,. There exist two laws of composition relative to E;: 1. An internal law of
composition, addition: If X = (x, x5, x3) and ¥ = (4,, ¥5, ya), then

X+ Y= (% + 91, x3 + Y3, X3 + ¥3)-

The following properties are verified: a. X + ¥ = ¥ + X (commutative);
b. X+ (Y + Z) = (X + Y) + Z (associative) ; and c. Given two vectors
X and Y, there exists a single vector Z = (z,, z,, 25) such that X = ¥ +
Z. We have z, = x; — y;; Z is called the difference of X and ¥ and is nota-
ted Z = X — 7. In particular X + 0 = 0 + X = X; and each vector X
may be associated with the opposite vector(— X), with components (—x,,
— %y, —X3), such that X + (- X) =

2. An external law of composition, multiplication by a scalar: If
pe R and X € E, then

pX = (pxy, pxo, pxs) € Es.
The following properties are verified for (p, ¢) e R: a. 1-X = X; b. p(¢X) =
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(pg) X (associative) ; and c. 0+ 9X =pX + ¢X andp(.X + ¥) = pX Y
(distributive). -

BASIS AND REFERENT OF A VECTOR SPACE

If it is impossible to find a system of p numbers a,, a,, a, . . ., a, which
are not all zero, such that -

alX]_ % ang i ﬂpo = O,

and on the condition that the p vectors X, X, ..., X, of the space E, are
not zero, then we shall say that these vectors are / nearly independent.
Suppose a vector of £, of which the ith component is 1, and the otherg
are 0. This vector ¢, is the ith unit vector of E,. There exist then 3 unit vectors
of Ej, for example, £, 7, , corresponding to the sets H, G, U, respectively;

and these three vectors are linearly independent, for the relation
ath + a8 + agit = O

entails @, = a, = a; = 0, Moreover, every vector X = (%1, x95 x3) of B8
may be written

X =2k + 2,7 + xa7.

It immediately results from this that there may not exist in £; more than
3 linearly independent vectors. The set h, g, @, constitutes a basis of E. By
analogy with elementary geometry, we can say that O, Og, Ou, are axes '.
of coordinates, and that their set constitutes a referent of E,. In such a space,
all the referents have the same origin 0.

Linear vectorial multiplicity. We say that a set V of vectors of £, which is
non-empty constitutes a linear vectorial multiplicity if it possesses the following
properties:

L. If Xis a vector of V, every vector pX belongs also to ¥ whatever the
scalar p may be.

2. If Xand Y are two vectors of ¥, X + ¥ also belongs to V. From this
we deduce that: 4. all linear vectorial multiplicity contains the vector
0(0-X = 0); and b. every linear combination aX + a0 X, + ... +q,X,
of p vectors of Vis a vector of V.

REMARKS

1. Every sonic event may be expressed as a vectorial multiplicity.

2. There exists only one base, 4, g, . Every other quality of the sounds
and every other more complex component should be analyzed as a linear
combination of these three unit vectors. The dimension of V is therefore 3.
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3. The scalars p, ¢, may not in practice take all values, for we would
then move out of the audible area. But this restriction of a Practlc.al o'rder
does not invalidate the generality of these arguments and their apphr{atlonrf.

For example, let O be the origin of a trihedral of refen?nce with Ok,
Og, Ou, as referent, and a base £, g, i, with the following units:

for £, 1 = semitone;
for g, 1 = 10 decibels;
for @, 1 = second.

The origin O will be chosen arbitrarily on the “absolute” scales established
by tradition, in the manner of zero on the thermometer. Thus:

for £, O will be at Cy; (Az = 440 Hz)
for g, O will be at 50 db;
for @, O will be at 10 sec;

and the vectors

X, =5k - 37+ 5a

Xo=7h + 17 - la
may be written in traditional notation for 1 sec 2 J\.
Xl = 1 | fy

W—po=— o ——3g—3

. P ~ (50-350 = 20 dB)

X2=

b

————

i f ~ (.5:'0+10 =SO&,B)

In the same way

N+ X%=06+Nk+(1-3)g+ (5—- =12 - 27 + 4a.

"Yl""’Y= 7 " i

mp~ (50-20 =30dB)

We may similarly pursue the verification of all the preceding .propositions.

We have established, thanks to vectorial algebra, a working language
which may permit both analyses of the works of the past and new construc-
tions by setting up interacting functions of the components (combl-natlons
of the sets H, G, U). Algebraic research in conjunction with _expern:nental
research by computers coupled to analogue converters might give us
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information on the linear relations of a vectorial multlphmty S0 as to obtam
the timbres of existing instruments or of other kinds of sonic events. )
The following is an analysis of a fragment of Sonata, Op. 57 (Appas-
sionata), by Beethoven (see Fig. VI-1). We do not take the timbre into
account since the piano is considered to have only one timbre, homogeneous
over the register of this fragment.

A

1
I

-
rl!

Assume as unit vectors: /£, for which 1 = semitone; 7, for which
1 = 10db; and #, for which 1 = J. Assume for the origins 3

E on the /4 axis,

Jf = 60 db (invariable) on the 7 axis, and
5¢ on the 7 axis.

ALGEBRA OUTSIDE-TIME (OPERATIONS AND RELATIONS IN SET 4)

The vector X, = 18k + 0g + 5& corresponds to G.

The vector X; = (18 + 3)k + 0g + 4@ corresponds to Bp.
The vector X, = (18 + 6)% + 0g + 3 corresponds to Dp.
The vector X; = (18 + 9)k + 0g + 2i corresponds to E.
The vector X, = (18 + 12)% + 07 + la corresponds to G.
The vector X5 = (18 + 0)4 + 0g + 1& corresponds to G.

(See Fig. VI-2.)
Let us also admit the free vector 7 = 3% 4+ 07 — la; then the vectors
X, (fori =0, 1, 2, 3, 4) are of the form X; = X, + #
We notice that set 4 consists of two vector families, X, and 7, combined
by means of addition.
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I

Fig. VI-2

A second law of composition exists in the set (i = 0, 1, 2, 3, 4); it is
an arithmetic progression.

Finally, the scalar i leads to an antisymmetric variation of the com-
ponents £ and @ of X, the second 7 remaining invariant.

TEMPORAL ALGEBRA (IN SET T)

The sonic statement of the vectors X; of set 4 is successive:
Xu i X]_ B Xg =

T being the operator “before.”

This boils down to saying that the origin O ofthe base of 4 2 E; 2 V
is displaced on the axis of time, a shifting that has nothing to do with the
change of the base, which is in fact an operation within space E; of base
h, g, i. Thus in the case of a simultaneity (a chord) of the attacks of the six
vectors described for set 4, the displacement would be zero.

In Fig. VI-3 the segments designated on the axis of time by the origins
0 of X, are equal and obey the function Af; = At;, which is an internal law

i
I8
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of composition in set 7’; or consider an origin 0’ on the axis of time and a
segment unit equal to A¢; then ¢, = a + iAt, fori = 1, 2, 3, 4, 5.

A
%
_———¢
o— 3 \— ————
a
Fig. VI-3

ALGEBRA IN-TIME (RELATIONS BETWEEN SPACE Eg AND SET T)

We may say that the vectors X, of 4 have components H, G, U, which
may be expressed as a function of a parameter ¢,. Here t; = iAt; the values
are lexicographically ordered and defined by the increasing order i = 1, 2,
3, 4, 5. This constitutes an association of each of the components with the
ordered set 7' It is therefore an algebration of sonic events that is indepen-

dent of time (algebra outside-time), as well as an algebration of sonic events

as a function of time (algebra in-time).

In general we admit that a vector X is a function of the parameter of :

time ¢ if its components are also a function of . This is written
X(t) = H@k + G(t)g + U(t)

When these functions are continuous they have differentials. What is
the meaning of the variations of X as a function of time ¢? Suppose

dX dH dG dU _

Z2 T ETr@E T

If we neglect the variation of the component G, we will have the following
conditions: For dH/dt = 0, H = ¢,, and dUdt = 0, U = ¢,, H and U will
be independent of the variation of ¢; and for ¢, and ¢, # 0, the sonic event
will be of invariable pitch and duration. If ¢y and ¢, = 0, there is no sound
(silence). (See Fig. VI-4.)

For dH|dt = 0, H = ¢,, and dU/dt = ¢ U=ct+k if ¢, and
¢, # 0, we have an infinity of vectors at the unison. If ¢, = 0, then we have
a single vector of constant pitch ¢, and duration U = k. (See Fig. VI-5).
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For dH|dt = 0, H = ¢, and dU|dt = f(t), U = F(t), we have an

‘nfinite family of vectors at the unison. .

E For dH|dt = ¢y, H=ct + k, and dUJdt =0, U =¢,, if ¢, < ¢

lim ¢ = 0, we have a constant glissando of a single sound. If 6y > 0, th'en

we have a chord composed of an infinity of vectors of duration ¢, (thick

constant glissando). (See Fig. VI-6.)

d

c = P e |

h Cy

t,

Fig. VI-4

hié

Cot +k
$,a

Fig. VI-5

h ’

iy

Fig. VI-6 t,
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For dH[dt = ¢,, H = ¢,t + k, and dUldt = ¢,, U = ¢ t + r, we have a

o For dH/dt = f(t), H = F(t), and dU/dt = s(t), U = S(t), we have a
chord of an infinity of vectors of variable durations and pitches. (See /dt = f(¢) () / (t) (¢)

chord of an infinity of vectors. (See Fig. VI-10.)

Fig. VI-7.)
il =g H | .
| = —
H= Ch-ti-K '5’:, F ()
U = C“ot + k ! 1’_‘ ___”J S w
' = ‘e
Fig. VI-7 !
- Fig. VI-10
E! 3

For dH|dt = ¢,, H = ¢,t + k, and dU/dt = f(t), U = F(t), we have a

chord of an infinity of vectors. (See Fig. VI-8.) In the example drawn from Beethoven, set 4 of the vectors X, is not a

continuous function of #. The correspondence may be written

h — e ]
44/ 7/7 X X X X, X, X
"X Ptk ) e St
Hey tok ' Because of this correspondence the vectors are not commutable.
Set B is analogous to set A. The fundamental difference lies in the change
x kY ! of base in space E; relative to the base of 4. But we shall not pursue the
i analysis.
Fig. VI-8 | Remark
t :G ; If our musical space has two dimensions, e.g., pitch-time, pitch-intensity,

- For dHJdt = f(t), H = F(t), and dUdt =0, U = ¢,, if ¢, < ¢
lim ¢ = 0, we have a thin variable glissando. If ¢, > 0, then we have a

;‘lil;r(é (;E 93.1; infinity of vectors of duration ¢, (thick variable glissando). (See

3

H=F(¢)

U:C“

Fig. VI-9

l

-~
=1

pressure-time, etc., it is interesting to introduce complex variables. Let x be
the time and y the pitch, plotted on the i axis. Then z = x + yiis a sound of
pitch y with the attack at the instant x. Let there be a plane ur with the
following equalities: u = u(x,y),v = v(x,¥), and w = u + vi. They define
a mapping which establishes a correspondence between points in the uv
and xy planes. In general any w is a transformation of z.

The four forms of a melodic line (or of a twelve-tone row) can be
represented by the following complex mappings:

w = z,withu = xand » = y, which corresponds to identity (original form)
w = |z|?/z, with u = x and » = —y, which corresponds to inversion

w = |z|?/—zwithu = —xand » = y, which corresponds to retrogradation
w = —z, withu = —x and v = —y, which corresponds to inverted retro-
gradation.
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These transformations form the Klein group.?
Other transformations, as yet unknown, even to present-day musicians,

could be envisaged. They could be applied to any product of two sets of

sound characteristics. For example,w = (422 + Bz + 0)/(D2* + Ez + F),

which can be considered as a combination of two bilinear transformations

separated by a transformation of the type p = o Furthermore, for a

musical space of more than two dimensions we can introduce hypercomplex

systems such as the system of quaternions.

EXTENSION OF THE THREE ALGEBRAS TO SETS OF
SONIC EVENTS (an application)

We have noted in the above three kinds of algebras:

1. The algebra of the components of a sonic event, with its vector

language, independent of the procession of time, therefore an algebra
outside-time.

2. A temporal algebra, which the sonic events create on the axis of metric

time, and which is independent of the vector space.

3. An algebra in-time, issuing from the correspondences and functional
relations between the elements of the set of vectors X and of the set of metric

time, 7, independent of the set of X,

All that has been said about sonic events themselves, their components,

and about time can be generalized for sets of sonic events X and for sets 7.
In this chapter we have assumed that the reader is familiar with the

concept of the set, and in particular with the concept of the class as it is

interpreted in Boolean algebra. We shall adopt this specific algebra,

which is isomorphic with the theory of sets.

To simplify the exposition, we shall first take a concrete example by
considering the referential or universal set R, consisting of all the sounds of a
piano. We shall consider only the pitches; timbres, attacks, intensities, and
durations will be utilized in order to clarify the exposition of the logical
operations and relations which we shall impose on the set of pitches.

Suppose, then, a set A4 of keys that have a characteristic property.
This will be set 4, a subset of set R, which consists of all the keys of the
piano. This subset is chosen a priori and the characteristic property is the
particular choice of a certain number of keys.

For the amnesic observer this class may be presented by playing the
keys one after the other, with a period of silence in between. He will deduce
from this that he has heard a collection of sounds, or a listing of elements.
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Another class, B, consisting of a certain number of keys, is chosen in the
qay. It is stated after class 4 by causing the elements of B to sound.
Sachv;le observer hearing the two classes, 4 and B, will note thc temp?ral
. A before B; A T B, (T = before). Next he begins to notice relation-
fa‘?t' between the elements of the two classes. If certain elements or keys are
smpsnwn to both classes the classes intersect. If none are common, they are
Z‘?I?;int. If all the elements of B are common to one part ofA_hc deduces that
Bufs a class included in A. If all the elements of B are found in 4, am.:l a].l t-he
clements of A are found in B, he deduces that the two classes are indistin-
i i
gumhlij:tlclistilﬁzc::l:ﬁ a:r?deg;ain such a way that they have some elements in
common. Let the observer hear first 4, then B, then the common parltl. Hc
will deduce that: 1. there was a choice of keys, 4; 2. there wasa second choice
of keys, B; and 3. the part common to A and B was considered. The opera-
tion of intersection (conjunction) has therefore been used:

A-B or B-A.

This operation has therefore engendered a new class, which was symbolized
by the sonic enumeration of the part common to 4 amfl B. )

If the observer, having heard 4 and B, hears a ml_xture of-all the ele
ments of 4 and B, he will deduce that a new class is being considered, an'd
that a logical summation has been perfc-)rmetfl on the first two classes. This
operation is the union (disjunction) and is written

A B%or B4,

If class A has been symbolized or played to him and he is made to hear
all the sounds of R except those of 4, he will dlcduce that the 'complcmc.:nt
of 4 with respect to R has been chosen. This is a new operation, negation,

ich is written 4.
WthlI:I;fh‘:to we have shown by an imaginary experimer?t that we can
define and state classes of sonic events (while tal_cing precautions for -clarlty
in the symbolization); and effect th::ee operations of fundamental impor-
= ion, union, and negation.
tanc%rlln:flf?tt;ler:hand, ’an obsergver must undertake an intellectual task
in order to deduce from this both classes and opelrations. On_ our plane of
immediate comprehension, we replaced graphic signs by sonic events. We
consider these sonic events as symbols of abstract entities furnished w1tl;
abstract logical relations on which we may effect at least th'e fundamfn;a
operations of the logic of classes. We have not allowed §pec1al symbols or
the statement of the classes; only the sonic enumeration of the generic
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elements was allowed (though in certain cases, if the classes are alregg
known and if there is no ambiguity, shortcuts may be taken in the State
ment to admit a sort of mnemotechnical or even psychophysiologica
stenosymbolization). 2

We have not allowed special sonic symbols for the three operatio
which are expressed graphically by -, +, — ; only the classes resulting frop
these operations are expressed, and the operations are consequently deduc
mentally by the observer. In the same way the observer must deduce th
relation of equality of the two classes, and the relation of implication b
on the concept of inclusion. The empty class, however, may be symbolize
by a duly presented silence. In sum, then, we can only state classes, not t !
operations. The following is a list of correspondepces between the son
symbolization and the graphical symbolization as we have just defined it:

Graphic symbols
Clasons A, B G

Sonic symbols
Sonic enumeration of the generic
elements having the properties 4, B,
C, . .. (with possible shortcuts) '
Intersection (-)
Union (+)
Negation (—)
Implication (—)
Membership (g)
p: |

1]

Sonic enumeration of the elements
R not included in 4

A-B Sonic enumeration of the elements of
A4-B i

4+ B Sonic enumeration of the elements o :
A+ B !

A> B

A=258 sl

This table shows that we can reason by pinning down our thoughts by

means of sound. This is true even in the present case where, because of a
concern for economy of means, and in order to remain close to that immedi-

ate intuition from which all sciences are built, we do not yet wish to propose
sonic conventions symbolizing the operations -, +, —, and the relations

=, —. Thus propositions of the form 4, E, I, O may not be symbolized by

sounds, nor may theorems. Syllogisms and demonstrations of theorems may
only be inferred.
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Besides these logical relations and operations outsildc-time, we ha\"e

that we may obtain temporal classes (7" classes) issuing fl:()m the sonic
5":en];;oliza.tion that defines distances or intervals on the axis of time. The role
s)?:;me is again defined in a new way. It serves primarily as a crucible, rrllold,
zr space in which are inscribed the classes whose relations one must decipher.
Time is in some ways equivalent to the area of a sheet olf.paper ora blaf:k-
poard. It is only in a secondary sense that it may be conmdere(.i as carrying
generic elements (temporal distax)lces) and relations or operations between

nts (temporal algebra).

thfSﬁ;:::i‘:mS (and pcorrcspgondences may be established betvtreer-a tlfese
temporal classes and the outside-time classes, and we may recognize in-time
operations and relations on _thc clfxss level. ) o

After these general considerations, we shall give an example of musica
composition constructed with the aid.of the algebra of classes. For this we
must search out a necessity, a knot of interest.

Construction

Every Boolean expression or function F (4, B, C), for f:).(aml.:)lc, of tl_le
three classes 4, B, C can be expressed in the form called disjunctive canonic:

8
z ok,

i=1

where o, = 0; 1 and k;, = 4-B-C, A-B-C, A-B-C, A-B-C, A-B-C, 4-B-C,
A-B-C,4-B-C. e

A Boolean function with 7 variables can always be written in such a way
as to bring in a maximum of operations +, -, —, eqt.lal to 3n-27-2 — 1.
For n = 3 this number is 17, and is found in the function

P diBC+ ABCEXBC B BC (1)

For three classes, each of which intersects with the other two, function (1)
can be represented by the Venn diagram in Fig. VI-11. The flow chart of
the operations is shown in Fig. VI-12. . i

This same function F can be obtained with only ten operations:

F=(A-B+ 4-B)-C+ (A-B + 4-B)-C. (2)
Its flow chart is given in Fig. VI-13.

If we compare the two expressions of F, each of which defines a different
procedure in the composition of classes 4, B, C, we notice a more elegant
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Fig. VI-13 :

symmetry in (1) than in (2). On the other hand (2) is more economical (ten
operations as against seventeen). It is this comparison that was chosen for
the realization of Herma, a work for piano. Fig. VI-14 shows the flow chart
that directs the operations of (1) and (2) on two parallel planes, and Fig.
VI-15 shows the precise plan of the construction of Herma.

The three classes 4, B, C result in an appropriate set of keys of the piano.
There exists a stochastic correspondence between the pitch components and
the moments of occurrence in set 7, which themselves follow a stochastic
law. The intensities and densities (number of vectors/sec.), as well as the
silences, help clarify the levels of the composition. This work was composed
in 196061, and was first performed by the extraordinary Japanese pianist
Yuji Takahashi in Tokyo in February 1962.
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Conclusions and Extensions
for Chapters I-VI

I have sketched the general framework of an artistic attitude which, for the
first time, uses mathematics in three fundamental aspects: 1. as a philo-
sophical summary of the entity and its evolution, e.g., Poisson’s law; 2. as a
qualitative foundation and mechanism of the Logos, e.g., symbolic logic, set
theory, theory of chain events, game theory; and 3. as an instrument of
mensuration which sharpens investigation, possible realizations, and per-
ception, e.g., entropy calculus, matrix calculus, vector calculus.

To make music means to express human intelligence by sonic means,
This is intelligence in its broadest sense, which includes not only the pere-
grinations of pure logic but also the “logic™ of emotions and of intuition.
The technics set forth here, although often rigorous in their internal struc-
ture, leave many openings through which the most complex and mysterious
factors of the intelligence may penetrate. These technics carry on steadily
between two age-old poles, which are unified by modern science and
philosophy: determinism and fatality on the one hand, and free will and
unconditioned choice on the other. Between the two poles actual everyday
life goes on, partly fatalistic, partly modifiable, with the whole gamut of
interpenetrations and interpretations.

In reality formalization and axiomatization constitute a procedural
guide, better suited to modern thought. They permit, at the outset, the
placing of sonic art on a more universal plane. Once more it can be con-
sidered on the same level as the stars, the numbers, and the riches of the
human brain, as it was in the great periods of the ancient civilizations. The
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movements of sounds that cause movements in us in agreement with them
“procure a common pleasure for those who do not know how to reason; and
for those who do know, a reasoned joy through the imitation of the divine
harmony which they realize in perishable movements” (Plato, 7imaeus).

The theses advocated in this exposition are an initial sketch, but they
have already been applied and extended. Imagine that all the hypotheses of
generalized stochastic composition as described in Chapter II were to be
applied to the phenomena of vision. Then, instead of acoustic grains, sup-
pose quanta of light, i.e., photons. The components in the atomic, quan-
tic hypothesis of sound—intensity, frequency, density, and lexicographic
time—are then adapted to the quanta of light.

A single source of photons, a photon gun, could theoretically reproduce
the acoustic screens described above through the emission of photons of a
particular choice of frequencies, energies, and densities. In this way we could
create a luminous flow analogous to that of music issuing from a sonic source.
If we then join to this the coordinates of space, we could obtain a spatial
music of light, a sort of space-light. It would only be necessary to activate
photon guns in combination at all corners in a gloriously illuminated area
of space. It is technically possible, but painters would have to emerge from
the lethargy of their craft and forsake their brushes and their hands, unless
a new type of visual artist were to lay hold of these new ideas, technics, and
needs.

A new and rich work of visual art could arise, whose evolution would
be ruled by huge computers (tools vital not only for the calculation of bombs
or price indexes, but also for the artistic life of the future), a total audiovisual
manifestation ruled in its compositional intelligence by machines serving
other machines, which are, thanks to the scientific arts, directed by man.




Chapter VI

Towards a Metamusic

Today’s technocrats and their followers treat music as a message which the
composer (source) sends to a listener (receiver). In this way they believe
that the solution to the problem of the nature of music and of the arts in -
general lies in formulae taken from information theory. Drawing up an ac- 4
count of bits or quanta of information transmitted and received would thus
seem to provide them with “objective” and scientific criteria of aesthetic
value. Yet apart from elementary statistical recipes this theory—which
is valuable for technological communications—has proved incapable of
giving the characteristics of aesthetic value even for a simple melody of
J- 8. Bach. Identifications of music with message, with communication, and
with language are schematizations whose tendency is towards absurdities
and desiccations. Certain African tom-toms cannot be included in this
criticism, but they are an exception. Hazy music cannot be forced into too
precise a theoretical mold. Perhaps, it will be possible later when present
theories have been refined and new ones invented.

The followers of information theory or of cybernetics represent one
extreme. At the other end there are the intuitionists, who may be broadly
divided into two groups:

1. The “graphists,” who exalt the graphic symbol above the sound of
the music and make a kind of fetish of it. In this group it is the fashionable
thing not to write notes, but to create any sort of design. The “music” is
Jjudged according to the beauty of the drawing. Related to this is the so-called

aleatory music, which is an abuse of language, for the true term should be

English translation of Chapter VII by G. W. Hopkins.
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the “improvised”” music our grandfathers knew. This group is ignorant of
the fact that graphical writing, whether it be symbolic, as in traditional
notation, geometric, or numerical, should be no more than an image that
is as faithful as possible to all the instructions the composer gives to the
orchestra or to the machine.! This group is taking music outside itself.

2. Those who add a spectacle in the form of extra-musical scenic action
to accompany the musical performance. Influenced by the “happenings”
which express the confusion of certain artists, these composers take refuge
in mimetics and disparate occurrences and thus betray their very limited
confidence in pure music. In fact they concede certain defeat for their
music in particular.

The two groups share a romantic attitude. They believe in immediate
action and are not much concerned about its control by the mind. But
since musical action, unless it is to risk falﬁng into trivial improvisation,
imprecision, and irresponsibility, imperiously demands reflection, these
groups are in fact denying music and take it outside itself.

Linear Thought

I shall not say, like Aristotle, that the mean path is the best, for in
music—as in politics—the middle means compromise. Rather lucidity and
harshness of critical thought—in other words, action, reflection, and self-
transformation by the sounds themselves—is the path to follow. Thus when
scientific and mathematical thought serve music, or any human creative
activity, it should amalgamate dialectically with intuition. Man is one,
indivisible, and total. He thinks with his belly and feels with his mind. I
would like to propose what, to my mind, covers the term “music’:

1. It is a sort of comportment necessary for whoever thinks it and
makes it.

2. It is an individual pleroma, a realization.

3. It is a fixing in sound of imagined virtualities (cosmological,
philosophical, . . ., arguments).

4. It is normative, that is, unconsciously it is a model for being or for
doing by sympathetic drive.

5. Itis catalytic: its mere presence permits internal psychic or mental
transformations in the same way as the crystal ball of the hypnotist.

6. It is the gratuitous play of a child.

7. It is a mystical (but atheistic) asceticism. Consequently expressions
of sadness, joy, love, and dramatic situations are only very limited particular
instances.
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Musical syntax has undergone considerable upheaval and today it
seems that innumerable possibilities coexist in a state of chaos. We have an
abundance of theories, of (sometimes) individual styles, of more or less
ancient “schools.” But how does one make music? What can be.communi-
cated by oral teaching? (A burning question, if one is to reform musical
education—a reform that is necessary in the entire world.) |

It cannot be said that the informationists or the cyberneticians—much |
less the intuitionists—have posed the question of an ideological purge of the
dross accumulated over the centuries as well as by present-day develop-
ments. In general they all remain ignorant of the substratum on which they
found this theory or that action. Yet this substratum exists, and it will allow
us to establish for the first time an axiomatic system, and to bring forth a
formalization which will unify the ancient past, the preseht, and the future;
moreover it will do so on a planetary scale, comprising the still separate
universes of sound in Asia, Africa, etc. ?

In 1954% I denounced linear thought (polyphony), and demonstrated the
contradictions of serial music. In its place I proposed a world of sound-
masses, vast groups of sound-events, clouds, and galaxies governed by new
characteristics such as density, degree of order, and rate of change, which
required definitions and realizations using probability theory. Thus stochas-
tic music was born. In fact this new, mass-conception with large numbers
was more general than linear polyphony, for it could embrace it as a particu-
lar instance (by reducing the density of the clouds). General harmony?
No, not yet.

Today these ideas and the realizations which accompany them have
been around the world, and the exploration seems to be closed for all
intents and purposes. However the tempered diatonic system—our musical
terra firma on which all our music is founded—seems not to have been
breached either by reflection or by music itself.? This is where the next stage
will come. The exploration and transformations of this system will herald
a new and immensely promising era. In order to understand its determina-
tive importance we must look at its pre-Christian origins and at its subse-
quent development. Thus I shall point out the structure of the music of
ancient Greece; and then that of Byzantine music, which has best preserved
it while developing it, and has done so with greater fidelity than its sister,
the occidental plainchant. After demonstrating their abstract logical con-
struction in a modern way, I shall try to express in a simple but universal
mathematical and logical language what was and what might be valid in
time (transverse musicology) and in space (comparative musicology).
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In order to do this I propose to make a distinction in musical archi-
tectures or categories between outside-time,* in-time, and temporal. A g_iven pitch
scale, for example, is an outside-time architecture, for no horizontal or
vertical combination of its elements can alter it. The event in itself, that is,
its actual occurrence, belongs to the temporal category. Finally, a melody
or a chord on a given scale is produced by relating the outside-time category
to the temporal category. Both are realizations in-time of outside-time con-
structions. I have dealt with this distinction already, but here I shall show
how ancient and Byzantine music can be analyzed with the aid of these cate-
gories. This approach is very general since it permits both a universal
axiomatization and a formalization of many of the aspects of the various
kinds of music of our planet.

Structure of Ancient Music

Originally the Gregorian chant was founded on the structure of ancient
music, pace Combarieu and the others who accused Hucbald of being behind
the times. The rapid evolution of the music of Western Europe after the
ninth century simplified and smoothed out the plainchant, and theory was
left behind by practice. But shreds of the ancient theory can still be found
in the secular music of the fifteenth and sixteenth centuries, witness the
Terminorum Musicae diffinitorium of Johannis Tinctoris.® To look at antiquity
scholars have been looking through the lens of the Gregorian chant and its
modes, which have long ceased to be understood. We are only beginning to
glimpse other directions in which the modes of the plainchant can !;)e ex-
plained. Nowadays the specialists are saying that the modes are not in fact
proto-scales, but that they are rather characterized by melodic formulac.
To the best of my knowledge only Jacques Chailley® has introduced other
concepts complementary to that of the scale, and he would seem to be
correct. I believe we can go further and affirm that ancient music, at least
up to the first centuries of Christianity, was not based at all on scales and
modes related to the octave, but on tetrachords and systems.

Experts on ancient music (with the above exception) have ignored this
fundamental reality, clouded as their minds have been by the tonal con-
struction of post-medieval music. However, this is what the Greeks used
in their music: a hierarchic structure whose complexity proceeded by succes-
sive “nesting,” and by inclusions and intersections from the particular
to the general; we can trace its main outline if we follow the writings of
Aristoxenos:”

A. The primary order consists of the tone and its subdivisions. The whole
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tone is defined as the amount by which the interval of a fifth (the penta~
chord, or dia pente) exceeds the interval of a fourth (the tetrachord, or dia
tessaron). The tone is divided into halves, called semitones; thirds, Ca]]ec_fl
chromatic dieseis; and quarters, the extremely small enkarmonic. dieseis. No
interval smaller than the quarter-tone was used. |

B. The secondary order consists of the tetrachord. It is bounded by the -
interval of the dia tessaron, which is equal to two and a half tones, or thirty
twelfth-tones, which we shall call Aristoxenean segments. The two outet-'
notes always maintain the same interval, the fourth, while the two inner notes
are mobile. The positions of the inner notes determine the three genera of
the tetrachord (the intervals of the fifth and the octave play no part in it).
The position of the notes in the tetrachord are always counted from the
lowest note up: A

1. The enharmonic genus contains two enharmonic dieseis, or )
3 + 3 + 24 = 30 segments. If X equals the value of a tone, we can express
the enharmonic as XV/4. X1/4. X2 = X5/2

2. The chromatic genus consists of three types: a. soft, containing two
chromatic dieseis, 4 + 4 + 22 = 30, or XV3.X1/3. Y(Ws+3/») _ xsi2, b
hemiolon (sesquialterus), containing two hemioloi dieseis, 4.5 + 4.5 + 21
= 30segments, or X320, Y @201 ¥7/4 — X5/2; and c, “toniaion,” con- .
sisting of two semitones and a trihemitone, 6 + 6 + 18 = 30 segments,
or XV2. XUz, x3i2 _ ysiz,

3. The diatonic consists of: a. soft, containing a semitone, then three
enharmonic dieseis, then five enharmonic dieseis, 6 + 9 + 15 = 30 seg-
ments, or X'1/2. X3/4. X5/ — X5/2; b, syntonon, containing a semitone, a
whole tone, and another whole tone, 6 + 12 + 12 = 30 segments, or
X132.X_X AL X5I2.

C. The tertiary order, or the system, is essentially a combination of the
elements of the first two—tones and tetrachords either conjuncted or
separated by a tone. Thus we get the pentachord (outer interval the perfect
fifth) and the octochord (outer interval the octave, sometimes perfect). The
subdivisions of the system follow exactly those of the tetrachord. They are
also a function of connexity and of consonance.

D. The quaternary order consists of the tropes, the keys, or the modes,
which were probably just particularizations of the systems, derived by
means of cadential, melodic, dominant, registral, and other formulae, as in
Byzantine music, ragas, etc.

These orders account for the outside-time structure of Hellenic music.
After Aristoxenos all the ancient texts one can consult on this matter give
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this same hierarchical procedure. Seemingly Aristoxenos was used as a
model. But later, traditions parallel to Aristoxenos, defective interpretations,
and sediments distorted this hierarchy, even in ancient times. Moreover, it
seems that theoreticians like Aristides Quintilianos and Claudios Ptolemaeos
had but little acquaintance with music.

This hierarchical “tree” was completed by transition algorithms—
the metabolae—from one genus to another, from one system to another, or
from one mode to another. This is a far cry from the simple modulations or
transpositions of post-medieval tonal music.

Pentachords are subdivided into the same genera as the tetrachord they
contain. They are derived from tetrachords, but nonetheless are used as
primary concepts, on the same footing as the tetrachord, in order to define
the interval of a tone. This vicious circle is accounted for by Aristoxenos’
determination to remain faithful to musical experience (on which he insists),
which alone defines the structure of tetrachords and of the entire harmonic
edifice which results combinatorially from them. His whole axiomatics
proceeds from there and his text is an example of a method to be followed.
Yet the absolute (physical) value of the interval dia tessaron is left undefined,
whereas the Pythagoreans defined it by the ratio 3/4 of the lengths of the
strings. I believe this to be a sign of Aristoxenos’ wisdom; the ratio 3/4
could in fact be a mean value.

Two Languages

Attention must be drawn to the fact that he makes use of the additive
operation for the intervals, thus foreshadowing logarithms before their
time; this contrasts with the practice of the Pythagoreans, who used the
geometrical (exponential) language, which is multiplicative. Here, the
method of Aristoxenos is fundamental since: 1. it constitutes one of the two
ways in which musical theory has been expressed over the millennia; 2. by
using addition it institutes a means of “calculation” that is more economi-
cal, simpler, and better suited to music; and 3. it lays the foundation of the
tempered scale nearly twenty centuries before it was applied in Western
Europe.

Over the centuries the two languages—arithmetic (operating by
addition) and geometric (derived from the ratios of string lengths, and
operating by multiplication)—have always intermingled and interpene-
trated so as to create much useless confusion in the reckoning of intervals
and consonances, and consequently in theories. In fact they are both ex-
pressions of group structure, having two non-identical operations; thus they
have a formal equivalence.?
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There is a hare-brained notion that has been sanctimoniously repeated
by musicologists in recent times, ““ The Greeks,” they say, “had descending
scales instead of the ascending ones we have today.” Yet there is no trace
of this in either Aristoxenos or his successors, including Quintilianos® and
Alypios, who give a new and fuller version of the steps of many of the tropes,
On the contrary, the ancient writers always begin their theoretical explana-

tions and nomenclature of the steps from the bottom. Another bit of foolishe '.

ness is the supposed Aristoxenean scale, of which no trace is to be found in
his text.1°

Structure of Byzantine Music

Now we shall look at the structure of Byzantine music. It can contribute

to an infinitely better understanding of ancient music, occidental plain-
chant, non-European musical traditions, and the dialectics of recent Euro-

pean music, with its wrong turns and dead-ends. It can also serve to foresee

and construct the future from a view commanding the remote landscapes
of the past as well as the electronic future. Thus new directions of research
would acquire their full value. By contrast the deficiencies of serial music in
certain domains and the damage it has done to musical evolution by its
ignorant dogmatism will be indirectly exposed.

Byzantine music amalgamates the two means of calculation, the
Pythagorean and the Aristoxencan, the multiplicative and the additive,1!
The fourth is expressed by the ratio 3/4 of the monochord, or by the 30
tempered segments (72 to the octave).!? It contains three kinds of tones:
major (9/8 or 12 segments), minor (10/9 or 10 segments), and minimal
(16/15 or 8 segments). But smaller and larger intervals are constructed and
the elementary units of the primary order are more complex than in
Aristoxenos. Byzantine music gives a preponderant role to the natural
diatonic scale (the supposed Aristoxenean scale) whose steps are in the follow-
ing ratios to the first note: 1, 9/8, 5/4, 4/3, 27/16, 15/8, 2 (in segments 0,
12, 22, 30, 42, 54, 64, 72; or 0, 12, 23, 30, 42, 54, 65, 72). The degrees of
this scale bear the alphabetical names A, B, T, A E, Z, and H. A is the
lowest note and corresponds roughly to G,. This scale was propounded at
least as far back as the first century by Didymos, and in the second century
by Ptolemy, who permuted one term and recorded the shift of the tetra-
chord (tone-tone-semitone), which has remained unchanged ever since.!3
But apart from this dia pason (octave) attraction, the musical architecture is
hierarchical and “nested” as in Aristoxenos, as follows:

A. The primary order is based on the three tones 9/8, 10/9, 16/15, a
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supermajor tone 7/6, the trihemitone 6/5, another major tone 15/14, the

mitone or leima 256/243, the apotome of the minor tone 1.35/128, and
;enaliy the comma 81/80. This complexity results from the mixture of the
two means of calculation. . :

B. The secondary order consists of the tetrachords, as defined in Aristox-
enos, and similarly the pentachords and the octochords. The tetrachords
are divided into three genera:

1. Diatonic, subdivided into: first scheme, 12 + 11 + 7 = 30 seg-
ments, or (9/8)(10/9)(16/15) = 4/3, starting on A, H, etc; seconc} scheme,
11 + 7 + 12 = 30 segments, or (10/9)(16/15)(9/8) = 4/3, starting on E,
A, etc; third scheme, 7 + 12 + 11 = 30 segments, or (16/1-5) (9/&_})(!0/9) =
4/3, starting on Z, etc. Here we notice a develnpcc.i comlzfmatorlal mct_hod
that is not evident in Aristoxenos; only three of the six possible permutations
of the three notes are used.

2. Chromatic, subdivided into:!'* a. soft chromatic, derived from the
diatonic tetrachords of the first scheme, 7 + 16 + 7 = 30 segments, or
(16/15)(7/6)(15/14) = 4/3, starting on A, H, etc.; b. syntonon, or hard
chromatic, derived from the diatonic tetrachords of the second sc_hcme,
5 + 19 + 6 = 30 segments, or (256/243)(6/5) (135/128) = 4/3, starting on
ifend, etc, . .

3. Enharmonic, derived from the diatonic by alteration of the mobile
notes and subdivided into: first scheme, 12 + 12 + 6 = 30 segments, or
(9/8)(9/8)(256/243) = 4/3, starting on Z, H, T, etc.; second Sf:heme,
12 + 6 + 12 = 30 segments, or (9/8)(256/243)(9/8) = 4/3, starting on
A, H, A, etc.; third scheme, 6 + 12 + 12 = 30 segments, or (256/243) (9/8)
(9/8) = 4/3, starting on E, A, B, etc.

PARENTHESIS

We can see a phenomenon of absorption of the ancient CDha‘I‘II-lOHiC
by the diatonic. This must have taken place during thf: first centuries of
Christianity, as part of the Church fathers’ struggle against paganism and
certain of its manifestations in the arts. The diatonic had always been con-
sidered sober, severe, and noble, unlike the other types. In fact the ch romatic
genus, and especially the enharmonic, demanded a more advancefi musical
culture, as Aristoxenos and the other theoreticians had already pointed out,
and such a culture was even scarcer among the masses of the Roman perl.od.
Consequently combinatorial speculations on I.;he one hanq a:nd practical
usage on the other must have caused the specific chara.ct:el.'lstlcs of t_he en-
harmonic to disappear in favor of the chromatic, a subdivision of which fell
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away in Byzantine music, and of the syntonon diatonic. This phenomeno '
of absorption is comparable to that of the scales (or modes) of the Renais
sance by the major diatonic scale, which perpetuates the ancient syntonon
diatonic. e :
However, this simplification is curious and it would be interesting to
study the exact circumstances and causes. Apart from differences, or rather.
variants of ancient intervals, Byzantine typology is built strictly on the
ancient. It builds up the next stage with tetrachords, using definitions whic
singularly shed light on the theory of the Aristoxenean systems; this was
expounded in some detail by Ptolemy.!5 '

THE SCALES

C. The tertiary order consists of the scales constructed with the help of
systems having the same ancient rules of consonance, dissonance, and asso-
nance (paraphonia). In Byzantine music the principle of iteration and
Juxtaposition of the system leads very clearly to scales, a development which
is still fairly obscure in Aristoxenos and his successors, except for Ptolemy.
Aristoxenos seems to have seen the system as a category and end in itself,
and the concept of the scale did not emerge independently from the method
which gave rise to it. In Byzantine music, on the other hand, the system was
called a method of constructing scales. It is a sort of iterative operator, which
starts from the lower category of tetrachords and their derivatives, the
pentachord and the octochord, and builds up a chain of more complex
organisms, in the same manner as chromosomes based on genes. From this
point of view, system-scale coupling reached a stage of fulfillment that had
been unknown in ancient times. The Byzantines defined the system as the
simple or multiple repetition of two, several, or all the notes of a scale.
“Scale” here means a succession of notes that is already organized, such
as the tetrachord or its derivatives. Three systems are used in Byzantine
music:

the octachord or dia pason
the pentachord or wheel (trochos)
the tetrachord or triphony.

The system can unite elements by conjunct (synimenon) or disjunct
(diazeugmenon) juxtaposition. The disjunct Jjuxtaposition of two tetra-
chords one tone apart form the dia pason scale spanning a perfect octave.
The conjunct juxtaposition of several of these perfect octave dia pason leads
to the scales and modes with which we are familiar, The conjunct juxta-
position of several tetrachords (triphony) produces a scale in which the

Towards a Metamusic 189

octave is no longer a fixed sound in the tetrachord but one of its mobile
sounds. The same applies to the conjunct juxtaposition of several pentachords
(trochos).

The system can be applied to the three genera of tetrachords and to
each of their subdivisions, thus creating a very rich collection of scales.
Finally one may even mix the genera of tetrachords in the same scale (as in
the selidia of Ptolemy), which will result in a vast variety. Thus the scale
order is the product of a combinatorial method—indeed, of a gigantic
montage (harmony)—by iterative juxtapositions of organisms that are
already strongly differentiated, the tetrachords and their derivatives. The
scale as it is defined here is a richer and more universal conception than all
the impoverished conceptions of medieval and modern times. From this
point of view, it is not the tempered scale so much as the absorption by the
diatonic tetrachord (and itscorresponding scale) of all the other combinations
or montages (harmonies) of the other tetrachords that represents a vast loss
of potential. (The diatonic scale is derived from a disjunct system of two
diatonic tetrachords separated by a whole tone, and is represented by the
white keys on the piano.) It is this potential, as much sensorial as abstract,
that we are seeking here to reinstate, albeit in a modern way, as will be
seen.

The following are examples of scales in segments of Byzantine tem-
pering (or Aristoxenean, since the perfect fourth is equal to 30 segments):

Diatonic scales. Diatonic tetrachords: system by disjunct tetrachords,
12, 11, 735:12; 11,/7, 12, startingion the lewen A, 12,01 15.7; 125 12, 11, 7,
starting on the lower H or 4; system by tetrachord and pentachord, 7, 12,
11; 7,12, 12, 11, starting on the lower Z; wheel system (trochos), 11, 7, 12,
12; 11, 0 42 18 10 7, 32,0 v ety

Chromatic scales. Soft chromatic tetrachords: wheel system starting on
H, 7, 10002 T8 112 5 T8, 7 il slete:

Enharmonic scales. Enharmonic tetrachords, second scheme: system by
disjunct tetrachords, starting on A, 12, 6, 12; 12; 12, 6, 12, corresponding
to the mode produced by all the white keys starting with D. The enharmonic
scales produced by the disjunct system form all the ecclesiastical scales or
modes of the West, and others,for example: chromatic tetrachord, first
scheme, by the triphonic system, starting on low H: 12, 12, 6; 12, 12, 6; 12,
12, 6; 12, 12,6

Mixed scales. Diatonic tetrachords, first scheme + soft chromatic;
disjunct system, starting on low H, 12, 11, 7; 12; 7, 16, 7. Hard chromatic
tetrachord + soft chromatic; disjunct system, starting on low H, 5, 19, 6;
12; 7, 16, 7; etc. All the montages are not used, and one can observe the
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phenomenon of the absorption of imperfect octaves by the perfect octay,
by virtue of the basic rules of consonance. This is a limiting condition,

D. The quaternary order consists of the tropes or echoi (ichi). The echog
is defined by: ‘ '

the genera of tetrachords (or derivatives) constituting it

the system of juxtaposition

the attractions

the bases or fundamental notes

the dominant notes

the termini or cadences (katalixis)

the apichima or melodies introducing the mode

the ethos, which follows ancient definitions.
We shall not concern ourselves with the details of this quaternary
order.

Thus we have succinctly expounded our analysis of the outside-time
structure of Byzantine music. '

THE METABOLAE

But this outside-time structure could not be satisfied with a compait-
mentalized hierarchy. It was necessary to have free circulation between the
notes and their subdivisions, between the kinds of tetrachords, between the
genera, between the systems, and between the echoi—hence the need for a
sketch of the in-time structure, which we will now look at briefly. There
exist operative signs which allow alterations, transpositions, modulations,
and other transformations (metabolae). These signs are the phthorai and
the chroai of notes, tetrachords, systems (or scales), and echoi.

Note metabolae

The metathesis: transition from a tetrachord of 30 segments (perfect
fourth) to another tetrachord of 30 segments.

The parachordi: distortion of the interval corresponding to the 30
segments of a tetrachord into a larger interval and vice versa; or again,
transition from one distorted tetrachord to another distorted tetrachord.

Genus Metabolae

Phthora characteristic of the genus, not changing note names

Changing note names

Using the parachordi

Using the chroai.

System metabolae

Transition from one system to another using the above metabolae.
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Echos metabolae using special signs, the martyrikai phthorai or altera-
tions of the mode initialization.

Because of the complexity of the metabolae, pedal notes (isokratima)
cannot be “trusted to the ignorant.” Isokratima constitutes an art in itself,
for its function is to emphasize and pick out all the in-time fluctuations of the
outside-time structure that marks the music.

First Comments

It can easily be seen that the consummation of this outside-time struc-
ture is the most complex and most refined thing that could be invented by
monody. What could not be developed in polyphony has been brought to
such luxuriant fruition that to become familiar with it requires many years
of practical studies, such as those followed by the vocalists and instrumen'ta-
Jists of the high cultures of Asia. It seems, however, that none of the special-
ists in Byzantine music recognize the importance of this structure. It wou{d
appear that interpreting ancient systems of notation has claimed their
attention to such an extent that they have ignored the living tradition of the
Byzantine Church and have put their names to incorrect assertions. Tl_lus
it was only a few years ago that one of them® took the line of the Gregorian
specialists in attributing to the echoi characteristics other than those of the
oriental scales which had been taught them in the conformist schools. They
have finally discovered that the echoi contained certain characteristic mel-
odic formulae, though of a sedimentary nature. But they have not been able
or willing to go further and abandon their soft refuge among the manuscripts,

Lack of understanding of ancient music,'” of both Byzantine and Greg-
orian origin, is doubtless caused by the blindness resulting from the growth
of polyphony, a highly original invention of the barbarous and uncultivated
Occident following the schism of the churches. The passing of centuries and
the disappearance of the Byzantine state have sanctioned this neglect and
this severance. Thus the effort to feel a “harmonic” language that is much
more refined and complex than that of the syntonon diatonic and its scales
in octaves is perhaps beyond the usual ability of a Western music specialist,
even though the music of our own day may have been able to liberate him
partly from the overwhelming dominance of diatonic thinking. The only
exceptions are the specialists in the music of the Far East,'® who have always
remained in close contact with musical practice and, dealing as they were
with living music, have been able to look for a harmony other than the tonal
harmony with twelve semitones. The height of error is to be found in the
transcriptions of Byzantine melodies'® into Western notation using the
tempered system. Thus, thousands of transcribed melodies are completely
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wrong! But the real criticism one must level at the Byzantinists is that § in |
remaining aloof from the great musical tradition of the eastern church, they
have ignored the existence of this abstract and sensual architecture, both
complex and remarkably interlocking (harmonious), thisdeveloped remnang
and genuine achievement of the Hellenic tradition. In this way they have
retarded the progress of musicological research in the areas of:

antiquity

plainchant

folk music of European lands, notably in the East2°

musical cultures of the civilizations of other continents :

better understanding of the musical evolution of Western Europe from;,‘
the middle ages up to the modern period

the syntactical prospects for tomorrow’s music, its enrichment, and lts
survival.

Second Comments

I am motivated to present this architecture, which is linked to anthulty
and doubtless to other cultures, because it is an elegant and lively witness
to what I have tried to define as an outside-time category, algebra, or struc-!
ture of music, as opposed to its other two categories, in-time and temporal.
It has often been said (by Stravinsky, Messiaen, and others) that in music
time is everything. Those who express this view forget the basic structures on
which personal languages, such as “pre- or post-Webernian” serial music,
rest, however simplified they may be. In order to understand the universal
past and present, as well as prepare the future, it is necessary to distinguish
structures, architectures, and sound organisms from their temporal manifes-
tations. It is therefore necessary to take “snapshots,” to make a series of
veritable tomographies over time, to compare them and bring to light their
relations and architectures, and vice versa. In addition, thanks to the
metrical nature of time, one can furnish it too with an outside-time structure,
leaving its true, unadorned nature, that of immediate reality, of instan-
taneous becoming, in the final analysis, to the temporal category alone.

In this way, time could be considered as a blank blackboard, on which
symbols and relationships, architectures and abstract organisms are in-
scribed. The clash between organisms and architectures and instantan-
eous immediate reality gives rise to the primordial quality of the living
consciousness.

The architectures of Greece and Byzantium are concerned with the
pitches (the dominant character of the simple sound) of sound entities.
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Here rhythms are also subjected to an organization, but a much simp'lcr
one. Therefore we shall not refer to it. Certainly these ancient and Byzantine
models cannot serve as examples to be imitated or copied, but rather to
exhibit a fundamental outside-time architecture which has been thwarted

by the temporal architectures of modern (post-medieval) polyphonic music.
These systems, including those of serial music, are still a somewhat confused
magma of temporal and outside-time structures, for no one has yet thought
of unravelling them. However we cannot do this here.

progressive Degradation of Outside-Time Structures

The tonal organization that has resulted from venturing into polyphony
and neglecting the ancients has leaned strongly, by virture of its very nature,
on the temporal category, and defined the hierarchies of its harmonic
functions as the in-time category. Outside-time is appreciably poorer, its
“harmonics” being reduced to a single octave scale (C major on the two
bases C and A), corresponding to the syntonon diatonic of the Pythagorean
tradition or to the Byzantine enharmonic scales based on two disjunct
tetrachords of the first scheme (for C) and on two disjunct tetrachords of the
second and third scheme (for 4). Two metabolae have been preserved: that
of transposition (shifting of the scale) and that of modulation, which consists
of transferring the base onto steps of the same scale. Another loss occurred
with the adoption of the crude tempering of the semitone, the twelfth root
of two. The consonances have been enriched by the interval of the third,
which, until Debussy, had nearly ousted the traditional perfect fourths and
fifths. The final stage of the evolution, atonalism, prepared by the theory
and music of the romantics at the end of the nineteenth and the beginning
of the twentieth centuries, practically abandoned all outside-time structure.
This was endorsed by the dogmatic suppression of the Viennese school, who
accepted only the ultimate total time ordering of the tempered chromatic
scale. Of the four forms of the series, only the inversion of the intervals is
related to an outside-time structure. Naturally the loss was felt, consciously
or not, and symmetric relations between intervals were grafted onto the
chromatic total in the choice of the notes of the series, but these always
remained in the in-time category. Since then the situation has barely
changed in the music of the post-Webernians. This degradation of the
outside-time structures of music since late medieval times is perhaps the
most characteristic fact about the evolution of Western European music, and
it has led to an unparalleled excrescence of temporal and in-time structures.
In this lies its originality and its contribution to the universal culture. But
herein also lies its impoverishment, its loss of vitality, and also an apparent
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risk of reaching an impasse. For as it has thus far developed, European music
is ill-suited to providing the world with a field of expression on a planetary
scale, as a universality, and risks isolating and severing itself from historica]
necessities. We must open our eyes and try to build bridges towards oth erl
cultures, as well as towards the immediate future of musical thought, befo
we perish suffocating from electronic technology, either at the instrumenta
level or at the level of composition by computers.

Reintroduction of the Outside-Time Structure by Stochastics

By the introduction of the calculation of probability (stochastic musm)
the present small horizon of outside-time structures and asymmetries was
completely explored and enclosed. But by the very fagt of its introductio o
stochastics gave an impetus to musical thought that carried it over this
enclosure towards the clouds of sound events and towards the plasticity of
large numbers articulated statistically. There was no longer any distinction
between the vertical and the horizontal, and the indeterminism of in-time
structures made a dignified entry into the musical edifice. And, to crown the
Herakleitean dialectic, indeterminism, by means of particular stochastic
functions, took on color and structure, giving rise to generous possibilities
of organization. It was able to in¢lude in its scope determinism and, still*
somewhat vaguely, the outside-time structures of the past. The categories
outside-time, in-time, and temporal, unequally amalgamated in the history
of music, have suddenly taken on all their fundamental significance and for
the first time can build a coherent and universal synthesis in the past,
present, and future. This is, I insist, not only a possibility, but even a direc-
tion having priority. But as yet we have not managed to proceed beyond
this stage. To do so we must add to our arsenal sharper tools, trenchant
axiomatics and formalization.

SIEVE THEORY

It is necessary to give an axiomatization for the totally ordered struc-
ture (additive group structure = additive Aristoxenean structure) of the
tempered chromatic scale.?* The axiomatics of the tempered chromatic
scale is based on Peano’s axiomatics of numbers:

Preliminary terms. O = the stop at the origin; n = a stop; n’ = a stop
resulting from elementary displacement of n; D = the set of values of the
particular sound characteristic (pitch, dcns1ty, intensity, instant, speed,
disorder . . .). The values are identical with the stops of the displacements.
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First propositions (axioms).

1. Stop O is an element of D.

2. If stop nis an element of D then the new stop n’ is an element of D.

3. If stops n and m are elements of D then the new stops n' and m’ are
identical if, and only if] stops n and m are identical.

4. If stop n is an element of D, it will be different from stop O at the
origin.

5. If elements belonging to D have a special property P, such that
stop O also has it, and if, for every element n of D having this property the
element n’ has it also, all the elements of D will have the property P.

We have just defined axiomatically a tempered chromatic scale not
only of pitch, but also of all the sound properties or characteristics referred
to above in D (density, intensity ...). Moreover, this abstract scale, as
Bertrand Russell has rightly observed, & propos the axiomatics of numbers
of Peano, has no unitary displacement that is either predetermined or related
to an absolute size. Thus it may be constructed with tempered semitones,
with Aristoxenean segments (twelfth-tones), with the commas of Didymos
(81/80), with quarter-tones, with whole tones, thirds, fourths, fifths, octaves,
etc. or with any other unit that is not a factor of a perfect octave.

Now let us define another equivalent scale based on this one but having
a unitary displacement which is a multiple of the first. It can be expressed
by the concept of congruence modulo m.

Definition. Two integers x and n are said to be congruent modulo m when
mis a factor of x — n. It may be expressed as follows: x = n (mod m). Thus,
two integers are congruent modulo m when and only when they differ by
an exact (positive or negative) multiple of m; e.g., 4 = 19 (mod 5), 3 = 13
(mod 8), 14 = 0 (mod 7).

Consequently, every integer is congruent modulo m with one and with
only one value of n:

n=(0,1,2...,m—2m— 1)

Of each of these numbers it is said that it forms a residual class modulo
m; they are, in fact, the smallest non-negative residues modulo m. x =
n(mod m) is thus equivalent to x = n + km, where £ is an integer.

keZ=10, 11,32 £8.i}

For a given n and for any k € Z, the numbers x will belong by definition
to the residual class » modulo m. This class can be denoted m,,.
In order to grasp these ideas in terms of music, let us take the tempered
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semitone of our present-day scale as the unit of displacement. To this
shall again apply the above axiomatics, with say a value of 4 semito
(major third) as the elementary displacement.22 We shall define a n
chromatic scale. If the stop at the origin of the first scale is a D, the seco
scale will give us all the multiples of 4 semitones, in other words a “scal
of major thirds: D§, G, B, D'#, G’, B'; these are the notes of the first s
whose order numbers are congruent with 0 modulo 4. They all belong to
residual class 0 modulo 4. The residual classes 1, 2, and 3 modulo 4 will u
up all the notes of this chromatic total. These classes may be represented
the following manner:

residual class 0 modulo 4:4,
residual class 1 modulo 4:4,
residual class 2 modulo 4:4,
residual class 3 modulo 4:4,
residual class 4 modulo 4:4,, etc.

Since we are dealing with a sieving of the basic scale (elementary dis-
placement by one semitone), each residual class forms a sieve allowi g
certain elements of the chromatic continuity to pass through. By extension
the chromatic total will be represented as sieve 1,. The scale of fourths wi I
be given by sieve 5,, in which n = 0, 1, 2, 3, 4. Every change of the index d
will entail a transposition of this gamut. Thus the Debussian whole-tone
scale, 2, with n = 0, 1, has two transpositions: |

20— C, D, E, F§, Gi, A#,C 3
2, —~C4, D, F,G, A, B,Cf - - -- 'j
s

Starting from these elementary sieves we can build more complex
scales—all the scales we can imagine—with the help of the three operauons
of the Logic of Classes: union (disjunction) expressed as v, intersection
(conjunction) expressed as A, and complementation (negation) expressed
as a bar inscribed over the modulo of the sieve. Thus

2, v 2; = chromatic total (also expressible as 1,)
2, A 2; = no notes, or empty sieve, expressed as o

0—21and21—20

The major scale can be written as follows:

Towards a Metamusic 197

By definition, this notation does not distinguish between all the modes
on the white keys of the piano, for what we are defining here is the scale;
modes are the architectures founded on these scales. Thus the white-key
mode D, starting on D, will have the same notation as the C mode. But in
order to distinguish the modes it would be possible to introduce non-
commutativity in the logical expressions. On the other hand each of the
12 transpositions of this scale will be a combination of the cyclic permuta-
tions of the indices of sieves modulo 3 and 4. Thus the major scale transposed
a semitone higher (shift to the right) will be written

Bo A4V (31 A %),

(52 A4V (3pA4) Vv

and in general

(§n+2 A 4?;) N4 (§n+1 A 4ﬂ.+1) v (3ﬂ+2 A 4n+2) v (§ﬂ A 4'n+3)s

where n can assume any value from 0 to 11, but reduced after the addition
of the constant index of each of the sieves (moduli), modulo the correspond-
ing sieve. The scale of D transposed onto C is written

(3s A 44) V (B3nsa A 451) Y By Adeyg) v (§u+2 A 45 43)-

Musicology

Now let us change the basic unit (elementary displacement ELD) of
the sieves and use the quarter-tone. The major scale will be written

(sn A §1't+1) ¥ (8n+2 A §n+2) v (B:H-i A 3n+1) Vi (8n+8 A §n)x

withn =0, 1, 2, ..., 23 (modulo 3 or 8). The same scale with still finer
sieving (one octave = 72 Aristoxenean segments) will be written

(Ba A (9 V 9446)) V (Baig A (9nsa ¥ 9nsa)) V (Bava A 9isa)
v (8n+6 A (gnv 9n+3))3

withn = 0,1, 2,..., 71 (modulo 8 or 9).

One of the mixed Byzantine scales, a disjunct system consisting of a
chromatic tetrachord and a diatonic tetrachord, second scheme, separated
by a major tone, is notated in Aristoxenean segments as 5, 19, 6; 12; 11, 7,
12, and will be transcribed logically as

(81': A (gﬂ v gn-i-ﬂ)) v (9n+8 A (8n+2 v 8n+4))
V (8nss A (nss V 9nse)) V (Brse V 9nsa)s

(B2 A 43) v (30 A 4s). -' withn = 0,1,2,..., 71 (modulo 8 or 9).

| BaAdo) v (Bind)v
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The Raga Bhairavi of the Andara-Sampurna type (pentatonic
cending, heptatonic descending),?® expressed in terms of an Aristoxene
basic sieve (comprising an octave, periodicity 72), will be written as:
Pentatonic scale:

{Bn A (gn V gn+3)) v (8n+2 A (gn v 9n+6)) v (8n+ﬁ A 9n+3)

Heptatonic scale:

(8a A (92 V 9ns3)) V (Basz A (90 V 9nie)) V (Basa A (Fnsa V Inie))l
V (8as6 A (9nsa Vv 9 +6))

withn =0, 1, 2,..., 71 (modulo 8 or 9).

These two scales expressed in terms of a sieve having as its element
displacement, ELD, the comma of Didymos, ELD = 81/80 (81/80 to
power 55.8 = 2), thus having an octave periodicity of 56, will be written as;
Pentatonic scale:

(711 A (Sn v 8n+6)) v (7n+2 A (8rr.+5 v 8n+7)) i (7n+5 A 81|-c+1)

Heptatonic scale:

(71'1 A (Sn v 8n+8)) v (7n+2 A (8n+5 Vv 8n+7}) v (7n+3 A 8n+3)
V (Taea A (Basa V 8546)) V (Tnss A 8ry1)

forn=20,1,2,...,55 (modulo 7 or 8). _

We have just seen how the sieve theory allows us to express-any scale
in terms of logical (hence mechanizable) functions, and thus unify our study
of the structures of superior range with that of the total order. It can be
useful in entirely new constructions. To this end let us imagine complex,
non-octave-forming sieves.?* Let us take as our sieve unit a tempered
quarter-tone. An octave contains 24 quarter-tones. Thus we have to con-
struct a compound sieve with a periodicity other than 24 or a multiple of
24, thus a periodicity non-congruent with £-24 modulo 24 (for £ = 0, 1,
2,...). An example would be any logical function of the sieve of moduli
11 and 7 (periodicity 11 x 7 = 77 # k-24), (11, v 11,,,) A 7,,6. This
establishes an asymmetric distribution of the steps of the chromatic quarter-
tone scale. One can even use a compound sieve which throws periodicity
outside the limits of the audible area; for example, any logical function of
modules 17 and 18 (f[17, 18]), for 17 x 18 = 306 > (11 x 24).

Suprastructures

One can apply a stricter structure to a compound sieve or simply leave
the choice of elements to a stochastic function. We shall obtain a statistical
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coloration of the chromatic total which has a higher level of complexity.

Using metabolae. We know that at every cyclic combination of the sieve
jndices (transpositions) and at every change in the module or moduli of the
sieve (modulation) we obtain a metabola. As examples of metabolic trans-
formations let us take the smallest residues that are prime to a positive
pumber 7. They will form an Abelian (commutative) group when the
composition law for these residues is defined as multiplication with reduc-
tion to the least positive residue with regard to r. For a numerical example
letr = 18; theresidues 1,5, 7, 11, 13, 17 are primes to it, and their products
after reduction modulo 18 will remain within this group (closure). The
finite commutative group they form can be exemplified by the following

fragment:

5% 7 =353 —18 = 17;
11 x 11 = 121; 121 — (6 x 18) = 13; etc.

Modules 1, 7, 13 form a cyclic sub-group of order 3. The following is a
logical expression of the two sieves having modules 5 and 13:

L(5,18) = (13,44 V 13,45 V 13540 V 13, 40)
A 5n+1 ) (5n+2 v 5ﬂ+4) A 13n+9 v 13n+6-

One can imagine a transformation of modules in pairs, starting from the
Abelian group defined above. Thus the cinematic diagram (in-time) will be

L(5, 13) — L(11, 17) — L(7, 11) - L(5, 1) — L(5, 5) — .-+ — L(5, 13)

so as to return to the initial term (closure).?

This sieve theory can be put into many kinds of architecture, so as to
create included or successively intersecting classes, thus stages of increasing
complexity; in other words, orientations towards increased determinisms
in selection, and in topological textures of neighborhood.

Subsequently we can put into in-time practice this veritable histology
of outside-time music by means of temporal functions, for instance by giving
functions of change—of indices, moduli, or unitary displacement—in other
words, encased logical functions parametric with time.

Sieve theory is very general and consequently is applicable to any other
sound characteristics that may be provided with a totally ordered structure,
such as intensity, instants, density, degrees of order, speed, etc. I have al-
ready said this elsewhere, as in the axiomatics of sieves. But this method can
be applied equally to visual scales and to the optical arts of the future.

Moreover, in the immediate future we shall witness the exploration of
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this theory and its widespread use with the help of computers, for it
entirely mechanizable. Then, in a subsequent stage, there will be a sty
of partially ordered structures, such as are to be found in the classifica
of timbres, for example, by means of lattice or graph techniques.

Conclusion

I believe that music today could surpass itself by research into the out-
side-time category, which has been atrophied and dominated by t
temporal category. Moreover this method can unify the expression
fundamental structures of all Asian, African, and European music. It hag
considerable advantage: its mechanization—hence tests and models o
all sorts can be fed into computers, which will effect great progress in the
musical sciences. -

In fact, what we are witnessing is an industrialization of music which
has already started, whether we like it or not. It already floods our ears i_
many public places, shops, radio, TV, and airlines, the world over. It
permits a consumption of music on a fantasticscale, never before approached.
But this music is of the lowest kind, made from a collection of outdated
clichés from the dregs of the musical mind. Now it is not a matter of stoppingfl
this invasion, which, after all, increases participation in music, even if only
passively. It is rather a question of effecting a qualitative conversion of this’
music by exercising a radical but constructive critique of our ways of think-
ing and of making music. Only in this way, as I have tried to show in the
present study, will the musician succeed in dominating and transforming
this poison that is discharged into our ears, and only if he sets about it
without further ado. But one must also envisage, and in the same way, a |
radical conversion of musical education, from primary studies onwards,
throughout the entire world (all national councils for music take note).
Non-decimal systems and the logic of classes are already taught in certain
countries, so why not their application to a new musical theory, such as is
sketched out here?

Chapter VIl

Towards a Philosophy of Music

PRELIMINARIES

We are going to attempt briefly: 1. an “unveiling of the historical
tradition’’ of music,! and 2. to construct a music.

“Reasoning”’ about phenomena and their explanation was the greatest
step accomplished by man in the course of his liberation and growth. This
is why the Ionian pioneers—Thales, Anaximander, Anaximenes—must be

considered as the starting point of our truest culture, that of “reason.”

When I say “reason,” it is not in the sense of a logical sequence of arguments,
syllogisms, or logico-technical mechanisms, but that very extraordin.ary
quality of feeling an uncasiness, a curiosity, then of applying the question,
Oeyyos. It is, in fact, impossible to imagine this advance, which, in Ionia,
created cosmology from nothing, in spite of religions and powerful mystiques,
which were early forms of “reasoning.” For example, Orphism, which so
influenced Pythagorism, taught that the human soul is a fallen god, that
only ek-stasis, the departure from self, can reveal its true nature, and that
with the aid of purifications (kafxppoi) and sacraments (Spyre) it can regain
its lost position and escape the Wheel of Birth (rpoxés yevéoews, bhavachakra)
that is to say, the fate of reincarnations as an animal or vegetable. I am citing
this mystique because it seems to be a very old and widespread form_ of
thought, which existed independently about the same time in the Hinduism
of India.?

Above all, we must note that the opening taken by the Ionians has
finally surpassed all mystiques and all religions, including Christianity.

English translation of Chapter VIII by John and Amber Challifour.
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Never has the spirit of this philosophy been as universal as today: The
U.S., China, U.S.S.R., and Europe, the present principal protagonist
restate it with a homogeneity and a uniformity that I would even dare
qualify as disturbing. FE _

Having been established, the question (éAeyyos) embodied a Wheel ¢
Birth sui generis, and the various pre-Socratic schools flourished by ¢
ditioning all further development of philosophy until our time. Two are i
my opinion the high points of this period: the Pythagorean concept 0
numbers and the Parmenidean dialectics—both unique expressions of
same preoccupation.

As it went through its phases of adaptation, up to the fourth century
B.C., the Pythagorean concept of numbers affirmed that things are numbe
or that all things are furnished with numbers, or that things are similar to
numbers. This thesis developed (and this in particular interests the musicia
from the study of musical intervals in order to obtain the orphic catharsis,
for according to Aristoxenos, the Pythagoreans used music to cleanse the
soul as they used medicine to cleanse the body. This method is found in
other orgia, like that of Korybantes, as confirmed by Plato in the Laws. In
every way, Pythagorism has permeated all occidental thought, first of 2 i
Greek, then Byzantine, which transmitted it to Western Europe and to the
Arabs. 3

All musical theorists, from Aristoxenos to Hucbald, Zarlino, and
Rameau, have returned to the same theses colored by expressions of the
moment. But the most incredible is that all intellectual activity, including
the arts, is actually immersed in the world of numbers (I am omitting the
few backward-looking or obscurantist movements). We are not far from the
day when genetics, thanks to the geometric and combinatorial structure of
DNA, will be able to metamorphise the Wheel of Birth at will, as we wish
it, and as preconceived by Pythagoras. It will not be the ek-stasis (Orphic,
Hindu, or Taoist) that will have arrived at one of the supreme goals of all
time, that of controlling the quality of reincarnations (hereditary rebirths
malyyeveaia) but the very force of the “theory,” of the question, which is
the essence of human action, and whose most striking expression is Pythag- .
orism. We are all Pythagoreans.?

On the other hand, Parmenides was able to go to the heart of the ques-
tion of change by denying it, in contrast to Herakleitos. He discovered the
principle of the excluded middle and logical tautology, and this created
such a dazzlement that he used them as a means of cutting out, in the
evanescent change of senses, the notion of Being, of that which is, one,
motionless, filling the universe, without birth and indestructible; the
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not-Being, not existing, circumscribed, and spherical (which Melissos had
not understood).

[Flor it will be forever impossible to prove that things that are not
are ; but restrain your thought from this route of inquiry. . . . Only one
way remains for us to speak of, namely, that it is; on this route there
are many signs indicating that it is uncreated and indestructible, for
it is complete, undisturbed, and without end; it never was, nor will
it be, for now it is all at once complete, one, continuous; for what
kind of birth are you seeking for it? How and from where could it
grow? I will neither let you say nor think that it came from what is
not; for it is unutterable and unthinkable that a thing is not.
And what need would have led it to be created sooner or later if
it came from nothing? Therefore it must be, absolutely, or not at

all.
—Fragments 7 and 8 of Poem, by Parmenides*

Besides the abrupt and compact style of the thought, the method of the
question is absolute. It leads to denial of the sensible world, which is only
made of contradictory appearances that “two-faced” mortals accept as
valid without turning a hair, and to stating that the only truth is the notion
of reality itself. But this notion, substantiated with the help of abstract
logical rules, needs no other concept than that of its opposite, the not-
Being, the nothing that is immediately rendered impossible to formulate and
to conceive.

This concision and this axiomatics, which surpasses the deities and
cosmogonies fundamental to the first elements,® had a tremendous influence
on Parmenides’ contemporaries. This was the first absolute and complete
materialism. Immediate repercussions were, in the main, the continuity of
Anaxagoras and the atomic discontinuity of Leukippos. Thus, all intellectual
action until our time has been profoundly imbued with this strict axiomatics.
The principle of the conservation of energy in physics is remarkable. E'n-
ergy is that which fills the universe in electromagnetic, kinetic, or rnaterl'al
form by virtue of the equivalence matter—energy. It has become that which
is “par excellence.” Conservation implies that it does not vary by a sin-gle
photon in the entire universe and that it has been thus throughout eternity.
On the other hand, by the same reasoning, the logical truth is tautological:
All that which is affirmed is a truth to which no alternative is conceivable
(Wittgenstein). Modern knowledge accepts the void, but is it truly a non-
Being ? Or simply the designation of an unclarified complement?

After the failures of the nineteenth century, scientific thought became
rather skeptical and pragmatic. It is this fact that has allowed it to adapt
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and develop to the utmost. ““ All happens as if . . .” implies this doubt, wh
is positive and optimistic. We place a provisional confidence in new theories
but we abandon them readily for more efficacious ones provided that
procedures of action have a suitable explanation which agrees with
whole. In fact, this attitude represents a retreat, a sort of fatalism. This j
why today’s Pythagorism is relative (exactly like the Parmenidean axio-
matics) in all areas, including the arts. q

Throughout the centuries, the arts have undergone transformation
that paralleled two essential creations of human thought: the hierarchica
principle and the principle of numbers. In fact, these principles have domi
nated music, particularly since the Renaissance, down to present-day p
cedures of composition. In school we emphasize unify and recommend
unity of themes and of their development; but the serial system impo
another hierarchy, with its own tautological unity embodied in the tone row:
and in the principle of perpetual variation, which is founded on
tautology . . .—in short, all these axiomatic principles that mark our lives
agree perfectly with the inquiry of Being introduced twenty-five centurie__s_}:
ago by Parmenides. ‘

It is not my intention to show that everything has already been dis-
covered and that we are only plagiarists. This would be obvious nonsense.
There is never repetition, but a sort of tautological identity throughout the !
vicissitudes of Being that might have mounted the Wheel of Birth. It would
seem that some areas are less mutable than others, and that some regions of
the world change very slowly indeed. :

The Poem of Parmenides implicitly admits that necessity, need, causality, \
and justice identify with logic; since Being is born from this logic, pure
chance is as impossible as not-Being. This is particularly clear in the phrase,
“ And what need would have led it to be born sooner or later, if it came from |
nothing?”” This contradiction has dominated thought throughout the
millennia. Here we approach another aspect of the dialectics, perhaps the -
most important in the practical plan of action—determinism. Iflogic indeed
implies the absence of chance, then one can know all and even construct
everything with logic. The problem of choice, of decision, and of the future,
is resolved.

We know, moreover, that if an element of chance enters a deterministic
construction all is undone. This is why religions and philosophies every-
where have always driven chance back to the limits of the universe. And
what they utilized of chance in divination practices was absolutely not con- -
sidered as such but as a mysterious web of signs, sent by the divinities (who
were often contradictory but who knew well what they wanted), and which
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could be read by elect soothsayers. This web of signs can take many forn'.ls—
the Chinese system of I-Ching, auguries predicting the future from the flight
of birds and the entrails of sacrificed animals, even telling fortunes from tea
leaves. This inability to admit pure chance has even persisted in m(?dern
mathematical probability theory, which has succeeded in incorporating it
into some deterministic logical laws, so that pure chance and pure determinism
are only two facets of one entity, as I shall soon demonstrate with an example.

To my knowledge, there is only one “unveiling” of pure chance in all
of the history of thought, and it was Epicurus who dared to do it. Epicurus
struggled against the deterministic networks of the atomists, Platonists,
Aristoteleans, and Stoics, who finally arrived at the negation of free will and
believed that man is subject to nature’s will. For if all is logically ordered in
the universe as well as in our bodies, which are products of it, then our will
is subject to this logic and our freedom is nil. The Stoics admitted, for ex-
ample, that no matter how small, every action on earth had a repercussion
on the most distant star in the universe ; today we would say that the network
of connections is compact, sensitive, and without loss of information.

This period is unjustly slighted, for it was in this time that all kinds of
sophisms were debated, beginning with the logical calculus of the Megarians,
and it was the time in which the Stoics created the logic called modal, which
was distinct from the Aristotelian logic of classes. Moreover, Stoicism, by its
moral thesis, its fullness, and its scope, is without doubt basic to the forma-
tion of Christianity, to which it has yielded its place, thanks to the substitu-
tion of punishment in the person of Christ and to the myth of eternal reward
at the Last Judgment—regal solace for mortals.

In order to give an axiomatic and cosmogonical foundation to the
proposition of man’s free will, Epicurus started with the atomic hypothesis
and admitted that ““in the straight line fall that transports the atoms across
the void, . . . at an undetermined moment the atoms deviate ever so little
from the vertical . . . but the deviation is so slight, the least possible, that we
could not conceive of even seemingly oblique movements.”® This is the
theory of ekklisis (Lat. clinamen) set forth by Lucretius. A senseless principle
is introduced into the grand deterministic atomic structure. Epicurus thus
based the structure of the universe on determinism (the inexorable and paral-
lel fall of atome) and, at the same time, on indeterminism (ekklisis). It is
striking to compare his theory with the kinetic theory of gases first proposed
by Daniel Bernoulli. It is founded on the corpuscular nature of matter
and, at the same time, on determinism and indeterminism. No one but
Epicurus had ever thought of utilizing chance as a principle or as a type of
behavior.
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It was not until 1654 that a doctrine on the use and understanding
chance appeared. Pascal, and especially Fermat, formulated it by studyip
“games of chance”—dice, cards, etc. Fermat stated the two primary
of probabilities using multiplication and addition. In 1713 Ars Conjectan
by Jacques Bernoulli was published.” In this fundamental work Berno
enunciated a universal law, that of Large Numbers. Here it is as stated b
E. Borel: “Let p be the probability of the favorable outcome and ¢
probability of the unfavorable outcome, and let & be a small positive nun
ber. The probability that the difference between the observed ratio
favorable events to unfavorable events and the theoretical ratio p/q is larg
in absolute value than e will approach zero when the number of trials
becomes infinitely large.” ® Consider the example of the game of heads
tails. If the coin is perfectly symmetric, that is to say, absolutely true,
know that the probability p of heads (favorable outcome) and the probability
¢ of tails (unfavorable outcome) are each equal to 1/2, and the ratio p/g to 1.
If we toss the coin n times, we will get heads P times and tails @ times, ang
the ratio P/Q will generally be different from 1. The Law of Large Numbe;
states that the more we play, that is to say the larger the number # becomes,
the closer the ratio P/Q will approach 1. 3

Thus, Epicurus, who admits the necessity of birth at an undetermined moment,
in exact contradiction to all thought, even modern, remains anisolated case ;*
for the aleatory, and truly stochastic event, is the result of an accepte
ignorance, as H. Poincaré has perfectly defined it. If probability theory ai
mits an uncertainty about the outcome of each toss, it encompasses
uncertainty in two ways. The first is hypothetical: ignorance of the tr,
jectory produces the uncertainty; the other is deterministic: the Law of
Large Numbers removes the uncertainty with the help of time (or of space).
However, by examining the coin tossing closely, we will see how the sym-
metry is strictly bound to the unpredictability. If the coin is perfectly
symmetrical, that is, perfectly homogeneous and with its mass uniformly
distributed, then the uncertainty® at each toss will be a maximum and the
probability for each side will be 1/2. If we now alter the coin by redistribu~
ting the matter unsymmetrically, or by replacing a little aluminum with
platinum, which has a specific weight eight times that of aluminum, the
coin will tend to land with the heavier side down. The uncertainty will
decrease and the probabilities for the two faces will be unequal. When the
substitution of material is pushed to the limit, for example, if the aluminum_
is replaced with a slip of paper and the other side is entirely of platinum,
then the uncertainty will approach zero, that is, towards the certainty that

* Except perhaps for Heisenberg.
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the coin will land with the lighter side up. Here we have shown the inverse
relation between uncertainty and symmetry. This remark seems to be a
tautology, but it is nothing more than the mathematical definition of prob-
ability: probability is the ratio of the number of favorable outcomes to the
number of possible outcomes when all outcomes are regarded as equally
likely. Today, the axiomatic definition of probability does not remove this
difficulty, it circumvents it.

MUSICAL STRUCTURES EX NIHILO

Thus we are, at this point in the exposition, still immersed in the lines
of force introduced twenty-five centuries ago and which continue to regulate
the basis of human activity with the greatest efficacy, or so it seems. It is the
source of those problems about which we, in the darkness of our ignorance,
concern ourselves: determinism or chance,'® unity of style or eclecticism,
calculated or not, intuition or constructivism, a priori or not, a metaphysics
of music or music simply as a means of entertainment.

Actually, these are the questions that we should ask ourselves: 1. What
consequence does the awareness of the Pythagorean-Parmenidean field have
for musical composition? 2. In what ways? To which the answers are:
1. Reflection on that which is leads us directly to the reconstruction, as much
as possible ex nihilo, of the ideas basic to musical composition, and above all
to the rejection of every idea that does not undergo the inquiry (£Aeyyos,
di{nois). 2. This reconstruction will be prompted by modern axiomatic
methods.

Starting from certain premises we should be able to construct the
most general musical edifice in which the utterances of Bach, Beethoven,
or Schonberg, for example, would be unique realizations of a gigantic
virtuality, rendered possible by this axiomatic removal and reconstruc-
tion,

It is necessary to divide musical construction into two parts (see
Chapters VI and VII): 1. that which pertains to time, a mapping of entities
or structures onto the ordered structure of time; and 2. that which is inde-
pendent of temporal becomingness. There are, therefore, two categories:
in-time and oufside-time. Included in the category outside-time are the dura-
tions and constructions (relations and operations) that refer to elements
(points, distances, functions) that belong to and that can be expressed
on the time axis. The temporal is then reserved to the instantaneous
creation.

In Chapter VII I made a survey of the structure of monophonic music,
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with its rich outside-time combinatory capability, based on the origi
texts of Aristoxenos of Tarentum and the manuals of actual Byzantine my
sic. This structure illustrates in a remarkable way that which I understa
by the category outside-time. i s

Polyphony has driven this category back into the subconscious g
musicians of the European occident, but has not completely removed it;
that would have been impossible. For about three centuries after Monte.
verdi, in-time architectures, expressed chiefly by the tonal (or modal
functions, dominated everywhere in central and occidental Europe. How-
ever, it is in France that the rebirth of outside-time preoccupations occurred.
with Debussy and his invention of the whole-tone scale. Contact with th
of the more conservative traditions of the Orientals was the cause of it t
plainchant, which had vanished, but which had béen rediscovered by
abbots at Solesmes; one of the Byzantine traditions, experienced through
Moussorgsky; and the Far East.

This rebirth continues magnificently through Messiaen, with
“modes of limited transpositions” and “non-retrogradable rhythms,” bu
it never imposes itself as a general necessity and never goes beyond the
framework of the scales. However Messiaen himself abandoned this vei
yielding to the pressure of serial music. '

In order to put things in their proper historical perspective, it is
necessary to prevail upon more powerful tools such as mathematics and
logic and go to the bottom of things, to the structure of musical thought and
composition. This is what I have tried to do in Chapters VI and VII
and what I am going to develop in the analysis of Nomos alpha. b

Here, however, I wish to emphasize the fact that it was Debussy and
Messiaen!! in France who reintroduced the category outside-time in the
face of the general evolution that resulted in its own atrophy, to the advan-_:
tage of structures in-time.'? In effect, atonality does away with scales and [
accepts the outside-time neutrality of the half-tone scale.13 (This situation,
furthermore, has scarcely changed for fifty years.) The introduction of-
in-time order by Schénberg made up for this impoverishment. Later, with
the stochastic processes that I introduced into musical composition, the |
hypertrophy of the category in-time became overwhelming and arrived at
a dead end. It is in this cul-de-sac that music, abusively called aleatory, =
improvised, or graphic, is still stirring today. a

Questions of choice in the category outside-time are disregarded by
musicians as though they were unable to hear, and especially unable to
think. In fact, they drift along unconscious, carried away by the agitations
of superficial musical fashions which they undergo heedlessly. In depth, |

[
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however, the outside-time structures do exist and it is the privilege of man
not only to sustain them, but to construct them and to go beyond them:

Sustain them ? Certainly; there are basic evidences of this order which
will permit us to inscribe our names in the Pythagorea.n-Par.menidean field
and to lay the platform from which our ideas will build bridges O.f 1.mder-
standing and insight into the past (we are after all products of millions of
years of the past), into the future (we are equally products of the future),
and into other sonic civilizations, so badly explained by the present-day
musicologies, for want of the original tools that we so graciously set up for
them. -

Two axiomatics will open new doors, as we shall see in the analysis of
Nomos alpha. We shall start from a naive position concerning the perception
of sounds, naive in Europe as well as in Africa, Asia, or America. The
inhabitants of all these countries learned tens or hundreds of thousands of
years ago to distinguish (if the sounds were neither too long nor too short)
such characteristics as pitch, instants, loudness, roughness, rate of change,
color, timbre. They are even able to speak of the first three characteristics
in terms of intervals.

The first axiomatics leads us to the construction of all possible scales.
We will speak of pitch since it is more familiar, but the following arguments
will relate to all characteristics which are of the same nature (instants,
loudness, roughness, density, degree of disorder, rate of change).

We will start from the obvious assumption that within certain limits
men are able to recognize whether two modifications or displacements of
pitch are identical. For example, going from C to D is the same as going
from F to G. We will call this modification elementary displacement, ELD.
(It can be a comma, a half tone, an octave, etc.) It permits us to d_cﬁ.ne any
Equally Tempered Chromatic Gamut as an ETCHG sieve.'* By modifying the
displacement step ELD, we engender a new ETCHG sieve with the same
axiomatics. With this material we can go no farther. Here we introduce the
three logical operations (Aristotelean logic as seen by Boole) of conjunction
(“and,” intersection, notated A ), disjunction (“‘or,” union, notated v ), and
negation (““no,” complement, notated —), and use them to create classes of
pitch (various ETCHG sieves).

The following is the logical expression with the conventions as indicated
in Chapter VII:

The major scale (ELD = } tone):

(81‘: A §1'|+1l) b (8n+2 A 3n+2) v (8n+4 A 3n+1) v (8n+6 A §n)

where n = 0, 1, 2, . . ., 23, modulo 3 or 8.




210 Formalized Musje

(It is possible to modify the step ELD by a “rational metabola.” Thus the
logical function of the major scale with an ELD equal to a quarter-tone ca
be based on an ELD = 1/3 tone or on any other portion of a tone. Th
two sieves, in turn, could be combined with the three logical operations tc
provide more complex scales. Finally, “irrational metabolae” of ELD may
be introduced, which can only be applied in non-instrumental music,
Accordingly, the ELD can be taken from the field of real numbers),
The scale of limited transposition n° 4 of Olivier Messiaen'® (ELD =
1/2 tone):

3, A (4041 v 4’u+3)_V §n+1 A (45 V 4449)
4n+1 b 4n+3 v 3n.+1 A (4'11 e 4'u+2J

where n = 0, 1, .. ., modulo 3 or 4. i

The second axiomatics leads us to vector spaces and graphic and
numerical representations.®

Two conjunct intervals 2 and 4 can be combined by a musical operation
to produce a new interval ¢. This operation is called addition. To either an
ascending or a descending interval we may add a second conjunct interval
such that the result will be a unison; this second interval is the symmetric
interval of the first. Unison is a neutral interval; that is, when it is added to
any other interval, it does not modify it. We may also create intervals by
association without changing the result. F inally, in composing intervals we
can invert the orders of the intervals without changing the result. We have
just shown that the naive experience of musicians since antiquity (cf,
Aristoxenos) all over the earth attributes the structure of a commutative
group to intervals, .

Now we are able to combine this group with a field structure. At least
two fields are possible: the set of real numbers, R, and the isomorphic set of
points on a straight line. It is moreover possible to combine the Abelian
group of intervals with the field C of complex numbers or with a field of ,
characteristic P. By definition the combination of the group of intervals
with a field forms a vector space in the following manner: As we have just
said, interval group G possesses an internal law of composition, addition.
Let a and 4 be two elements of the group. Thus we have:

l.a+b=¢ceC

2.a+b+c=(@+b) +c=a+ (b+0 associativity
3.a+0=0+a with 0 € G the neutral element (unison)
4. a+ad =o, with @’ = —a = the symmetric interval of a

S5.a4+b=b+a

commutativity
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We notate the external composition of elements in G with those in the
field C by adot -. If A, u € C (where C' = the field of real numbers) then we
have the following properties:

6. \-a, p-acG

7. 1ra = a-1 = a (1l is the neutral element in C with respect to

multiplication)

8. A-(ua) = (A-p)-a

9. A+ pa=Xxa+pa

A(a+b) =Aa+ Ab

associativity of A, p

distributivity

MUSICAL NOTATIONS AND ENCODINGS

The vector space structure of intervals of certain sound characteristics
permits us to treat their elements mathematically and to express them by
the set of numbers, which is indispensable for dialogue with computers, or
by the set of points on a straight line, graphic expression often being very
convenient.

The two preceding axiomatics may be applied to all sound charac-
teristics that possess the same structure. For example, at the moment it
would not make sense to speak of a scale of timbre which might be univer-
sally accepted as the scales of pitch, instants, and intensity are. On the other
hand, time, intensity, density (number of events per unit of time), the
quantity of order or disorder (measured by entropy), etc., could be put into
one-to-one correspondence with the set of real numbers R and the set of
points on a straight line. (See Fig. VIII-1.)

| | ! | |

o o o J.a o
Fig. VIII-1 Pitches Instants Intensities Densities Disorder

Moreover, the phenomenon of sound is a correspondence of sound
characteristics and therefore a correspondence of these axes. The simplest
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correspondence may be shown by Cartesian coordinates; for example, th
two axes in Fig. VIII-2. The unique point (H, T") corresponds to the so
that has a pitch H at the instant 7. |

¢ R

7

O—

Fig. VIII-2 . !

I must insist here on some facts that trouble many people and that are

used by others as false guides. We are all acquainted with the traditio
notation, perfected by thousands of years of effort, and which goes back t
Ancient Greece. Here we have just represented sounds by two new methe
algebraically by a collection of numbers, and geometrically (or graphicall
by sketches).

These three types of notation are nothing more than three codes, and
indeed there is no more reason to be dismayed by a page of figures than b
full musical score, just as there is no reason to be totemically amazed b
nicely elaborated graph. Each code has its advantages and disadvantag
and the code of classical musical notation is very refined and precise
synthesis of the other two. It is absurd to think of giving an instrumenta
who knows only notes a diagram to decipher (I am neglecting here cer
forms of regression—pseudomystics and mystifiers) or pages covered wi
numerical notation delivered directly by a computer (unless a special co
is added to it, which would translate the binary results into musical no
tion). But theoretically all music can be transcribed into these three code:
at the same time. The graph and table in Fig. VIII-3 are an example of
this correspondence: We must not lose sight of the fact that these three cod

are only visual symbols of an auditory reality, itself considered as a symbol.
|

Graphical Encoding for Macrostructures

At this point of this exposition, the unveiling of history as well as the
axiomatic reconstruction have been realized in part, and it would be useless
to continue. However, before concluding, I would like to give an example
of the advantage of a diagram in studying cases of great complexity.
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A— 440 %~
1 fam._':'_g} -——- )
F V"l'—3 =/sec .—_J P_ ;—’ f- ﬁf
19.
& H 4 D /
1.00 1 0 066 3
1.66 6 0 033 ''5
2.00 6 +175 080 6
0 ? D

note number

pitch in half tones with +10 =~ A = 440 Hz
slope of glissando (if it exists) in semitones/sec,
positive if ascending, negative if descending
D = duration in seconds

/ = number corresponding to a list of intensity
forms

N
1
2
3
412,80 1148
N
H
v

o

Let us imagine some forms constructed with straight lines, using string
glissandi, for example.'” Is it possible to distinguish some elementary forms ?
Several of these elementary ruled fields are shown in Fig. VIII-4. In fact,
they can constitute elements incorporated into larger configurations.
Moreover it would be interesting to define and use in sequence the inter-
mediary steps (continuous or discontinuous) from one element to another,
especially to pass from the first to the last element in a more or less violent
way. If one observes these sonic fields well, one can distinguish the following
general qualities, variations of which can combine with these basic general
forms:

Registers (medium, shrill, etc.)

Overall density (large orchestra, small ensemble, etc.)

Opverall intensity

Variation of timbre (arco, sul ponticello, tremolo, etc.)

. Fluctuations (local variations of 1., 2., 3., 4. above)

. General progress of the form (transformation into other elementary

]

NE oo e

. Degree of order. (Total disorder can only make sense ifit is calculated
accordmg to the kinetic theory of gases. Graphic representation is the most
convenient for this study.)
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GENERAL CASE

Organization Outside-Time

Consider a set U and a comparison of U by U (a product U x U)
denoted $(U, f). Then (U, f) = U x U and for all pairs (4, u;) e U x U
such that u, u; € U, either (u, u;) € $(U, f), or (u, u;) ¢ $(U, f). Itis reflexive
and (u~ uy) = (uy ~u); (u~u and uy ~ ') =u~u' for u, v, u, €
lﬁ(U’f)' b 2 :

Thus ¢(U, f) is an equivalence class. In particular if U is isomorphic
to the set @ of rational numbers, then u ~ u,if |u — u,| < Au, for arbitrary
Auy.

Now we define (U, f) as the set of weak values of U, (U, m) as the set
of average values, and (U, p) as the strong values. We then have

= (U, £) Vp(U,m) (U, p) = U x U
where i is the quotient set of U by 4. The subsets of ¢ may intersect or be

disjoint, and may or may not form a partition of U x U. Here
continuity, by sound-points; for example, string pizzicati. Our previous

remarks about continuity can be transferred to this case (see Fig. VIII-5), ML) 3 i m) (it )

Points 1.-7. are identi i i i i i i
OF;“ismmm jji?:rigt;ﬂ;ifu‘?{fry ilr:sad is the ﬂb;;;‘:fitl?ﬂ- Besides, a mixture are ordered by the relation -3 in such a way that the elements of (U, f) are
us a il
Y& HEw Cicnaton. smaller than those of (U, m) and those of (U, m) are smaller than those of

$(U, p). Then
| .- WUS) O, m) = 2, $(U, m) O YU, ) = 2.

In each of these subsets we define four new equivalence relations and
therefore four sub-classes:

Fig. VIIl-4

Let us now suppose the inverse, forms constructed by means of dis-

$(U, f) with uj ~ (uf)’

if and only if
|t — ()| < Adt with o, (uf)’ € (U, f)

‘3 for i = 1, 2, 3, 4, with (U, f) < ¢(U, f) and $*(U, f) 3 ¢2(U, f) 3
! - (U, f) 3 *(U,f) ordered by the same relation -3. The same equivalence
Fig. VIII-5 ! e " relations and sub-classes are defined for (U, m) and (U, p).

1 For simplification we write

1l ! u{ == {u: ue'/“(Usf)}:

and the same for u* and u}.
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In the same way, equivalence sub-classes are created in two other
G and D. Here U represents the set of time values, G the set of inten
values, and D the set of density values with

U = {uf, u}, up}
G = (g, &7, &t}
D = {d{s d;n’ df}
fori,j, k= 1,2, 3, 4.
Take part of the triple product U x G x D composed of the poi
(ur, &7, d7). Consider the paths V1: {u?, ers dfy, V2: {uf, g, d1, . . ., IR
{(h, uh, w3, ), (el B, gh £8), (a7, df 43, dp)} fori = 1,2, 3, 4. VS will be
asubset of the triple product U x G x D splitinto 4° = 64 different points,
In each of these subsets choose a new subset K 7 defined by the = poi
K}j=1,2..,nand) = V1, V2,..., VS). These n points are consider
as the n vertices of a regular polyhedron. Consider the transformations whi h
leave the polyhedron unchanged, that is, its corresponding group.
To sum up, we have the following chain of inclusions:

w CATY. o AR /ol = A cycUxG x i
element vertex of set of path A
of the poly- vertices  (subset of
Ux G x D hedron K; of the Ux G x D)
polyhedron

Consider the two other sets H (pitch) and X (sonic material, way
playing, etc.). Form the product H x X x C in which C is the set of
forms or complexes or sound types C; (i =1, 2,..., n); for example,
cloud of sound-points or a cloud of glissandi. Map the product H x X x
onto the vertices of the polyhedron K. |

1. The complexes C; traverse the fixed vertices and thus produce group;'
transformations; we call this operation 6,. :

2. The complexes C, are attached to corresponding vertices which
remain fixed, but the H x X traverse the vertices, also producing group
transformations; this operation is called 6. ]

3. The product H x X x C traverses the vertices thus producing the |
group transformations of the polyhedron; we call this operation 8, because
the product can change definition at each transformation of the polyhedron.
Organization In-Time |

The last mapping will be inscribed in time in two possible ways in order
to manifest the peculiarities of this polyhedral group or the symmetric group -
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which it is isomorphic: operation f,—the vertices of the polylhedron are
» ressed successively (model of the symmetric group); operation t,—the
cxfti.;cs are expressed simultaneously (n simultaneous voices).
ve

Product ty x 8y: _ '
The vertices K} are expressed successively with:

1. only one sonic complex C,, always the same one, for example, a

-points only
oud of sound-poin 3 . /
3 2. several sonic complexes, at most z, in one-to-one attachment with

3 A
: - dices of vertices K\, |
1 3. several sonic complexes whose successive appearances express the
operations of the polyhedral group, the vertices ¢ (defined by U x G x D)
ing i der
lways appearing in the same order, ] .
b i several sonic complexes always in the same order while the order of
the vertices ¢ reproduces the group transfomllatlor.ls, b
5. several sonic complexes transforming independently from the

vertices of the polyhedron.

Product t, x 0;: ;
The list which this product generates may be obtained from the pre-

ceding one by substituting # x X in place of ¢;.

Product ¢, x 0:

This list may be readily established. .

Case t, and 6, is obtained from the preceding ones by analogy.

To these in-time operational products one ought to be 'abl_e to ac%d
in-space operations when, for example, the sonic sources are distributed in
space in significant manner, as in Terrétektorh or Nomos gamma.
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Organization Outside-Time

The three sets, D (densities), G (intensities), U/ (durations), are mappe
onto three vector spaces or onto a single three-dimensional vector spa
The following selection (subset) of equivalence classes, called path V1
made: D (densities) strong, G (intensities) strong, U (durations) weak..
Precise and ordered values have been given to these classes:

Set D a b ¢ Set G Set U  sec
(Elements/sec)
d, 4 D 1 7 mf u, 2
dy B b g5 I Uy 3
dy 20 239 3 25 qr Uz k2
d, 2000 8s TItr Uy 5

Set D Elements/sec Set G Set U sec
d, 0.5 &1 P uy 10
dy 1 ga mp U 17
dy 2 g3 mf Uy 21
A 3 &8s Vg Uy 30

Eight “points” of the triple product D x G x U are selected.
For path V1:
K = digiuy; Kj = digsus; Ki = dygeay; K} = dygyuy;
Ki = dygous; Ky = dygsug; K = dygaus; K; = dygau,.
r is the column (sub-class) of the table of set D. (r=ab,c)
For path V2:

K, = d,gsu;; K, = dygaty; Kz = dygau,; Ky = dygoug;
K; = dygius; Kg = dygauz; K, = dogattz; Kg = d; gty

I. These eight points are regarded as solidly connected to each other
s0 as to form a cube (a mapping of these eight points onto the vertices of a
cube). The group formed by substitutions among these eight points, iso-
morphic to the symmetric group P,, is taken as the organizer principle. (See
Fig. VIII-6.)
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Organization In-Time

I. The symmetry transformations of a cube given by the elements K}
form the hexahedral group isomorphic to the symmetric group P;. The
rules for in-time setting are: 1. The vertices of the cube are sounded suc-
cessively at each transformation thanks to a one-to-one correspondence. 2.
The transformations are themselves successive (for a larger ensemble of
instruments one could choose one of the possible simultaneities as in Nomos
gamma). They follow various graphs (kinematic diagrams) inherent in the
internal structure of this particular group. (See Figs. VIII-6, 7, 8.)
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Example: DA = G on D the transformation of A. (Columns - rows)
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Fig. VIII-6. Symmetric Group P4: (1, 2, 3, 4)

Fig. VIII-6. Hexahedral (Octahedral__) Group

/I 12345678
A 21436587
B 34127856
C 43218765
D? 23146758
D 31247568
E? 24316875
.E 41328576

G2 32417685
G 42138657
L? 13425786
L 14235867
Q, 78653421
Q. 76583214
Q; 86754231
Q1. 67852341

Q, 68572413
Qs 65782134
Q, 87564312
Qs 75863142
Q, 58761432
Q,, 57681324
Q, 85674123
Q.. 56871243

The numbers in roman type
also correspond to Group Py = 4!
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Organization Outside-Time

I1. Eight elements from the macroscopic sound complexes are mapped 1
onto the letters C; in three ways, o, B, y: ¢ '

wLLR Sy
C, C, C; = ataxic cloud of sound-points |
C, C, Cs = relatively ordered ascending or descending cloud of sound-
points '
Cs C, Cg = relatively ordered cloud of sound-points, neither ascending
nor descending 4
C; €5 C, = ataxic field of sliding sounds :
Cs Cg C; = relatively ordered ascending or descending field of sliding’.;‘_'—i
sounds
Cy C, C, = relatively ordered field of sliding sounds, neither ascending
nor descending 1
Cs Cs Cs = atom represented on a cello by interferences of a quasi-
unison '
C, C, C, = ionized atom represented on a cello by interferences,
accompanied by pizzicati

III. These letters are mapped one-to-one onto the eight vertices of a g
second cube. Thus a second hexahedral group is taken as the organizer
principle. '
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I1. The mapping of the eight forms onto the letters C; change cyclically

in the order a, B, v, «, . . . after each three substitutions of the cube.

III. The same is true for the cube of the letters C;.

Vi Va Vs 'y i 1e

Vil Va W3 Ve e
ValVa vs v Ve ¥y vr Ay VeZ+rArBre
AQ Vol Vs i Va ¥ Ve Wy hwd F gttt g + L
AlaQ Palvy VoVe Vi Va s 3y err & ghe L
R[] 4 Ve Vs Vo Vi Vs Vi R Vy = Qs+ Pty + &,
Vo [ve W Vo Vo vs Vi [ Ve = @0+ Pe @3+ Q@5
Yo =@yt @y +Qut @y
A, Q
v v e va ey
R v T
vy . Vy Vy 7 73 vy Ve Ve Yy
' v Vi Vi va

Vi

v

Vi
“O"&

Fig. VIII-8
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IV. Take the products K} x C; and K, x C,. Then take the produ
set /1 x X. Set H is the vector space of pitch, while set X is the set of wa
of playing the C,. This product is given by a table of double entries: (

i+

Extremely ;
High i
Medium
High

Medium
Low

Extremely
Low

. ; g ;
—_— - 8] I
: e E g : E B
By — I ik o = 1 . o
- R HI o Ble. =
gl ek At IR - e - LS. i S
C), Gy, Cy Cy, Cs, Cg 'C'J’! Ca' i
4
pizz. = pizzicati hr trem. = harmonic sound with
f.c.l. = struck with the wood of the _ tremolo i
bow asp = arco sul ponticello
an = normal arco asp trem. = arco sul ponticello
pizz. gl. = pizzicato-glissando tremolo

a trem. = normal arco with tremolo a interf. = arco with interferences
harm. = harmonic sound )

Various methods of playing are attributed to the forms (4, . . ., Cg, a
indicated in the table. The first and fourth rows, extremely high and
extremely low pitches, are reserved for path V2. A sub-space of H' is
attributed to path V1. It consists of the second and third rows of the pre-
ceding table, each divided into two. These four parts are defined in terms
of the playing range of the corresponding column. '

V. The mapping of C; onto the product set H x X is relatively in-
dependent and will be determined by a kinematic diagram of operation
at the moment of the in-time setting.
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Organization In-Time

IV. The products K] x C; and K; x C,, are the result of the product
of two graphs of closed transformations of the cube in itself. The mapping
of the graphs is one-to-one and sounded successively; for example:

lCi { lgraph (D:Qm}
K, graph (D Q)

(See Figs. VIIL-9, 10.)

Fig. VIII-9

V. Each C; is mapped onto one of the cells of H x X according to
two principles: maximum expansion (minimum repetition), and maximum
contrast or maximum resemblance. (See Fig. VIII-11.)
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Organization Outside-Time

VI. The products K! x C, x H' x X and K; x C, x Ffextremes
are formed. !

VII. The set of logical functions (a) is used in this piece. Its mo
are taken from the subset formed by the prime residual classes mod
18, with multiplication, and reduction modulo 18.

L(m,n) = (n; v NV eV m)Amy,V (mgvm)A n, v (nev oy, v n,)

Its elements are developed:

1. From a departure function:

L(11,18) = (13, v 15; v 13; v 13g) A 11, v (T1, v 11g)
A 135 v (13, v 13; v 13)

2. From a “metabola” of moduli which is identical here to the gra
coupling the elements of the preceding subset. This metabola gives
following functions: L(11,13), L(17,5), L(13,11), L(17,7), L1138
L(1, 5), L(5,7), L(17, 11), L(7,5), L(17,13), L(5, 11), L(1, 11). (See Fi
VIII-12, and Table of the Sieve Functions and Their Metabolae.) E

3. From three substitution rules for indices (residual classes) :

Rule a: my— n,,,

Rule b: If all indices within a set of parentheses are equal, the next
function L(m, n) puts them in arithmetic progression modulo the cor#‘ri
responding sieve. ’

Rule c: Conversion of indices as a consequence of moduli metabolae
(see Rule c. Table): ]

Mm;—> Ny, x = j(n/m); for example, 7, >11,, » = 4(11/7) ~ 6. %
4. From a metabola of ELD (elementary displacement: one quarter-
tone for path V1, three-quarters of a tone for path V2). _ 1
The two types of metabolae which generate the elements of set L(m, n)
can be used outside-time or inscribed in-time. In the first case, they give us
the totality of the elements; in the second case, these elements appear ina

temporal order. Nevertheless a structure of temporal order is subjacent even
in the first case.

5. From a special metabola that would simultaneously attribute differ-
ent notes to the origins of the sieves constituting the function L(m, n)
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Organization In-Time

VI. The elements of the product K] x C; x H’ x X of the path V1

sounded successively, except for interpolation of elements of the Product
arcx C; x H®™"*™ x X from path V2, which are sounded intermittently.
1 VfI. Each of the three substitutions of the two cube.s K‘. antfl C;, t}}e
logical function L(m, n) (see Fig. VIII-11), (':hz?ngc:s followmg its kmer.natlc
diagram, developed from the group: n}uitlphcanon by pairs of residual
classes and reduction modulo 18. (See Fig. VIII-10.)

Table of the Sieve Functions and Their Metabolae

L(11,13) = (135 + 135 + 13, + 13g)11, + (T1, + 115)13,
+ 13, + 13; + 13,
L(17,5) = (51 + 55 + 55 + 517, + (17, + 17;3)54 + 5; + 5 + 5
L(13,11) = (115 + 11, + 11, + 115)13, + (135 + 13,5)11,
+ 11, + 11, + 11,
LA7,7) = (11 + T3+ Ts + Te)17y + (M7 + 1710)76 + 71 + 7o + Ta
L(11,35) = (50 + 35 + 55 + 34)11, + (11, + 115)5, + 5 + 5; + 5,
L(1,5) = (5 + 55 + 53 + 5,)1; + (1; + 1,)54 + 5; + 5, + 93
L5, N = (11 + 15 + 74 + Tg)5p + (5o + 0176 + Ty + Ty + 74
L(17,11) = (11, + 115 + g + L)1, + (17, + 175)11,
+ 11 + 115 + 114
L(7,5) = (51 + 52 + 55 + 54)70 + (7o + 71)54 + 5; + 55 + 55
L(17,13) = (135 + 135 + 134 + 13,0)17, + (17, + 175)13,,
+ 135 + 135 + 13,
L(5,11) = (115 + 114 + 11, + 115)5 + (50 + 5,)115 + 115 + 11, + 11,
L(1,11) = (113 + 114 + 117 + 1)1, + (1, + 1) 11g + 115 + 11, + 11,

Rule c. Table

g: §=1
%=1.4 ;.=1
¥ =22 Se1y Hoi
?=2.6 1—73=1.85 i—l=1.2 %:1
1—57=3.4 $=2.43 o = 154 %= 1.3
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Group and sub-group of residual classes obtained by ordinary multiplicati S5 = 9%
followed by reduction relative to the modulus 18 /
S = /
et i s s Sk - e & - : sbesi et
1 16 T ML 0 0 B AR mn
- 301 M- Ay SIS & ARG TR § O o AN (T S SR | Sg = ——=
! B! 42 i@l 1 BiLAd L Lk (In this text C, is replaced by S,.)

& G T 0 GRS WS 1R v AR by (R
B & S B QU A0 I SR
bl Y b ST °. SR ) TR SR |

First sequence (see Fig. VIII-13):
1 2 3 4 5 6 7 8
CRENHE BCH EUE SN BRUAE. i One
D(S,) =8 S8 § Sy 8 S i8g S |
.D(K,,) = Kz Ks 1 Kx& Ke K'r Ka Ka !
a2 10 872, 117:98:1:2.854 V6.08 i
T e A el S |

This part begins with a pizzicato glide on the note C, fff (the
sliding starts ppp). The slope of the glide is zero at first and then very |
weak (1/4 tone per 2.5 seconds). -

S, consists of C# C# D struck col legno, fff (with p in the
middle). In S, there is an introduction of beats obtained by raising

G## towards A. |

-t

S

DETAILED ANALYSIS OF THE BEGINNING OF THE SCORE (L(11,13))18

Thanks to the metabola in 5. of the outside-time organization, '
origins of the partial sieves (13; v 13, v 13, v 135) A 11, v (T, v IT;) A
133 and 13, v 13, v 134 correspond to Az# and Ag, respectively, for
A3 = 440 Hz. Hence the sieve L(11, 13) will produce the following pitches%'

(L] CJ} CZ#’ -D2; Dszz, FZ#: GZJ 62# AB; BEJ; CS) CS# ‘D3#J Dﬂ—#; FSﬁ[L
F3#} Ga#» Aa?ﬁ Aa#s Baa C47;-Dit Ei: Eit G-!J A4) A4 #’ Aiﬁ S %

Second sequence, beginning at Q,,/@5: |,

1 2 3 4 ) 6 7 8
¥ o 2 g el LA AN e e el VL
Qm(Sn) b Ss Sﬁ Ss S’i‘ 51 Sz S4 Sa ‘
Qa(Ku) = Ky Kg K; K K, K, K, K, |
608 3,72 /798283 10 225 225 1.0 |
A = N /il st I o il i .

The order applied to the sonic complexes (S,) and to the density,
intensity, and duration combinations (K,,) are for transformation B:

$om frenn K =1 mf Note, as in the preceding part, the previously calculated con- l'i
I TE 2 traction of the values of duration.

W ot i i £ S, is ataxic, lasting more than a second. |

e El Ky =225  fff

Third sequence, beginning at Q,/Q5:
1 2 3 4 5 6 7 8

|
8 = _.=_: K, =10 mf i
N G A e |
Q4(Sn) e Se S'r Ss 'Sa Sz Sa Sﬂ S1
QT(Kn) AT Ks K’! Kﬁ KB K4 Ka KI Kz
6081798 |28 3@ g @R L O 0205 .

ER ¥ A R g el e
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ELD = } tone

1 tone

Fig. VIII-13. Opening Bars of Nomos alpha for Cello

Fig. VIII-12, Nomos alpha Sieves
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NOMOS GAMMA—A GENERALIZATION OF NOMOS ALPH.

performed on one cello in Nomos alpha is transposed to full orchestra
Nomos gamma (1967/68). The ninety-eight musicians are scattered in :
audience; this scattering allows the amplification of Nomos alpha’s structu

Formalized M

In S the slopes of the glissandi in opposite directions cancel each
other. The enlargement in §, is produced by displacement of the
lower line and the inducement of beats. The cloud is introduced by a
pizzicato on the C'string; the index finger of the left hand is placed
on the string at the place where one would play the note in square
brackets; then by plucking that part of the string between the nut
and the index finger with the left thumb, the sound that results will
be the note in parentheses.

The finite combinatorial construction expressed by finite groups |

Terrétektorh (1965/66), which preceded Nomos gamma, innovated
scattering of the orchestra and proposed two fundamental changes:

a. The quasi-stochastic sprinkling of the orchestral musicians
among the audience. The orchestra is in the audience and the audience
is in the orchestra. The public should be free to move or to sit on
camp-stools given out at the entrance to the hall. Each musician of
the orchestra should be seated on an individual, but unresonant, dais
with his desk and instruments. The hall where the piece is to be per-
formed should be cleared of every movable object that might cause
aural or visual obstruction (seats, stage, etc.) A large ball-room having
(if it were circular) a minimum diameter of 45 yards would serve in
default of a new kind of architecture which will have to be devised for
all types of present-day music, for neither amphitheatres, and still less
normal theatres or concert-halls, are suitable.

The scattering of the musicians brings in a radically new kinetic
conception of music which no modern electro-acoustical means could
match.*® For if it is not possible to imagine 90 magnetic tape tracks re-
laying to 90 loud speakers disseminated all over the auditorium, on
the contrary it is quite possible to achieve this with a classical orchestra
of 90 musicians. The musical composition will thereby be entirely
enriched throughout the hall both in spatial dimension and in move-
ment. The speeds and accelerations of the movement of the sounds
will be realized, and new and powerful functions will be able to be
made use of, such as logarithmic or Archimedean spirals, in-time and
geometrically. Ordered or disordered sonorous masses, rolling one
against the other like waves . . . etc., will be possible.
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Terrétektorh is thus a ““Sonotron”: an accelerator of sonorous
particles, a disintegrator of sonorous masses, a synthesizer. It puts the
sound and the music all around the listener and close up to him. It
tears down the psychological and auditive curtain that separates him
from the players when positioned far off on a pedestal, itself frequently
enough placed inside a box. The orchestral musician rediscovers his
responsibility as an artist, as an individual.

b. The orchestral colour is moved towards the spectrum of dry
sounds, full of noise, in order to broaden the sound-palette of the
orchestra and to give maximum effect to the scattering mentioned
above. For this effect, each of the 90 musicians has, besides his
normal string or wind instrument, three percussion instruments, viz.
Wood-block, Maracas, and Whip as well as small Siren-whistles,
which are of three registers and give sounds resembling flames. So if
necessary, a shower of hail or even a murmuring of pine-forests can
encompass each listener, or in fact any other atmosphere or linear
concept either static or in motion. Finally the listener, each one
individually, will find himself either perched on top of a mountain in
the middle of a storm which attacks him from all sides, or in a frail
barque tossing on the open sea, or again in a universe dotted about
with little stars of sound, moving in compact nebulae or isolated.??

Now the crux or thesis of Nomos gamma is a combinatorial organization
of correspondences, finite and outside the time of the sets of sound
characteristics. Various groups are exploited; their inner structure and
their interdependency are put in relief musically: cyclic group of order 6,
groups of the rectangle (Klein), the triangle, the square, the pentagon, the
hexagon, the tetrahedron, and the hexahedron.

The isomorphisms are established in many ways, that is, each one of
the preceding groups is expressed by different sets and correspondences,
thus obtaining structures set up on several interrelated levels. Various
groups are interlocked, intermingled, and interwoven. Thus a vast sonic
tapestry of non-temporal essence is formed (which incidentally includes the
organization of time and durations). The space also contributes, and is
organically treated, in the same manner as the more abstract sets of sound
elements.

A powerful deterministic and finite machinery is thus promulgated. Is it
symmetrical to the probabilistic and stochastic machineries already proposed ?
The two poles, one of pure chance, the other of pure determinacy, are
dialectically blended in man’s mind (and perhaps in nature as well, as
Epicurus or Heisenberg wished it). The mind of man should be able to
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travel back and forth constantly, with ease and elegance, through
fantastic wall, of disarray caused by irrationality, that separates determin
from indeterminacy. _ ;
We will now consider some examples. It goes without saying t
Nomos gamma is not entirely defined by group transformations. Arbitr
ranges of decisions are disseminated into the piece, as in all my work
except for those originated by the stochastic program in Chap. V. Howe
Nomos gamma represents a stage in the method of mechanization by com
puters for this category of problem.

Measures 1-16 (three oboes, then three clarinets)

OUTSIDE-TIME STRUGTURE

Set of pitches: H = {H,, H,, H,, H,, Hy). Origins: D,, G#3, Dy, GE,,
Dy, respectively, with range + 3 semitones. N :
Set of durations: U = {U,, U,, U,, U,}. Origins: GLO ) Oy <l

o » respectively, with range + one sixteenth-note and a half n

S

Set of intensities: G = (G, G, Gs, Ga). Gy = {40, pip 19, b, by
Gy = {p, b mpy mp, mp, mf, wif}, Go = {mf, £, 1, 1, of, S, s G = LA, ST

=

Jy}‘:fﬂ »Yf)% -chrf }. Origins: pp, mp, ji _)‘jf, respectively.

Product sets: K = H x U x G. Each one of the points of the prod
set 1s defined by a sieve modulo » considered as an element of an add
group (eg., n=3,..., 302343 +3,—+3—>3—>3,—>3, —.-
and by its unit, that is, the elementary displacement ELD:

KimHy Gy x Uy Ky=H, x G, x U, Ky = H, x G, x Uy}
Moduli: ‘2.2 9 g 2enED 2 2 7.
ELD: } tone $sec 1 tone Tsec  tone Ls
Ky=H, x Gy x Uy Ky=H, x G, x U, Ke = Hy x Gy x Ug
Moduli: 3 2 3 < s 3 2
ELD: } tone #sec 1 tone $sec 1 tone %5

In addition, K, and K are deformed by translations and homothetic trans-
formations of the H values. .

Let us now consider the three points K, K,, K; of the product H x
G x U, and map them one-to-one onto three successive moments of time,
We thus define the triangle group with the following elements:

{I, 4, 42, B, BA, BA% < {123, 312, 231, 132, 213, 321}
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IN'TIME STRUCTURE

For each transformation of the triangle the vertices are stated by K,

K,, Ks, which are played successively by the oboes and the clarinets,
# . - . .

a;;ording to the above permutation group and to the following circuit:

BA, BA%, A, B, BA2, A2
Measures 16-22 (three oboes and three clarinets)

OQUTSIDE-TIME STRUCTURE

Form the product K; x C;: K; x C,, K, x Cy, K5 x Cs, in which the
C, are the ways of playing. C; = smoqth s?und wit}‘lout vibrato, C; = flutter
tongue, C3 = quilisma (irregular oscillations of Pltch). .

Consider now two triangles whose respective vertices are the three
oboes and the three clarinets. The K; x C; values are the names of the
vertices. All the one-to-one mappings of the K; x C,. names onto thc. three
space positions of the three oboes or of the three clarinets form one triangle

group.
IN-TIME STRUCTURE

To cach group transformation the names K; x C; are stated simul-
taneously by the three oboes, which alternate with the three clarinets. The
circuits are chosen to be I, BA, BA, I, A%, B, BA, A, BA? and I, B, B.

Measures 404—42—A Sound Tapestry

The string orchestra (sixteen first violins, fourteen second violins,
twelve violas, ten cellos, and eight double basses) is divided into two times
three teams of eight instruments each: ¢,, ¢,, da, 1, iy, 3. The remaining
twelve strings duplicate the ones sitting nearest them. In the text that
follows the ¢; and i§; are considered equivalent in pairs (¢; ~ ;). Therefore
we shall only deal with the ¢;,.

LEVEL 1—OUTSIDE-TIME STRUCTURE

The eight positions of the instruments of each ¢, are purposely taken
into consideration. Onto these positions (instruments) we map one-to-one
eight ways of playing drawn from set X = {on the bridge tremolo, on the
bridge tremolo and trill, sul ponticello smooth, sul ponticello tremolo,
smooth natural harmonic notes, irregular dense strokes with the wood of
the bow, normal arco with tremolo, pizzicato-glissando ascending or
descending}. We have thus formed a cube: KVBOS 1.

Onto these same eight positions (instruments) of ¢; we map one-to-one
eight dynamic forms of intensity taken from the following sets: g, =
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{ppp crescendo, ppp diminuendo, pp cresc, pp dim, p cresc, p dim, mp cre
mp dim}, g, = {mf cresc, mf dim, f cresc, f dim, ff cresc, ff dim s Jff crese
mdlm} g: = {p dim, p cresc, mp dim, mp cresc, mf dim, mf cresc , f dim
f cresc}. We have thus defined a second cube: KVBOS 2.

LEVEL ]l —IN-TIME STRUCTURE

Each one of these cubes is transformed into itself following the kinema
diagrams of the hexahedral group (cf. Nomos alpha, p. 225); for example
KVBOS 1 following D?@,, . ..and KVBOS 2 following @,,@-. ...

LEVEL 2—OUTSIDE-TIME STRUGCTURE

The three partitions ¢,, ¢,, ¢4 are now considerédd as a triplet of poi
in space. We map onto them, one-to-one, three distinct pitch ranges H,
H;, H, in which the instrumentalists of the preceding cubes will play. Wi
have thus formed a triangle TRIA 1.

Onto these same three points we map one-to-one three elements draws
from the product (durations x intensities), U x G = {2.5 sec g,, 0.5 sec
1.5 sec g;}. We have thus defined a second triangle TRIA 2.

LEVEL 2—IN-TIME STRUCTURE
When the two cubes play a Level 1 transformation, the two triang
A%, B, BA, BA? are the group elements, then TRIA 1 proceeds accordmgé

to the kinematic diagram A4, B, BA?, A%, BA, BA?%, and TRIA 2 procced§
simultaneously according to 4, BA?, BA, A%, B, AB. 4

LEVEL 3—OUTSIDE-TIME STRUCTURE

Form the product C; x M; with three macroscopic types: C,
clouds of webs of pitch glissandi, C; = clouds of sound-points, and Cj

305 31, 32. From this product we select five elements: C; x 3, = [, C; X
8, =4,C, x 3; = 4% C, x 3, = A% C3 x 3; = A° which could belong"
to the cyclic group of order 6. '

LEVEL 3—IN-TIME STRUCTURE

durations of 20 sec, 7.5 sec, 12.5 sec, 12.5 sec, 7.5 sec.
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LEVEL 4—OUTSIDE-TIME STRUCTURE

The partition of the string orchestra into teams ¢, i, is done in two
modes: compact and dispersed. The compact mode is itself divided into two
cases: Compact I and Compact II. For example,

in Compact | ‘?51 i {VIIS: VIII! VII,, VI, 44, VC,, VC&: CB4}
in Compact I, ¢, = {VI,, VI, VI, VI, VI ,, 4q, VC;, CBy}
in the dispersed mode, ¢, = {VI,, VI;, VIg, VII,, VIIg, VII,,, CBy, CB;}

(VI, = ith first violin, VII; = ith second violin, 4; = ith viola, VC; = ith
cello, CB; = ith double bass.) These partitions cannot occur simultaneously.

LEVEL 4—IN-TIME STRUCTURE

All the mechanisms that sprang from Levels 1, 2, 3 are in turn plunged
into the various above definitions of the ¢, and ¢, teams, and successively
into Compact I during the 27.5 sec duration, into the dispersed mode during
the 17.5 sec duration, into Compact II during 5 sec, into the dispersed mode
during 5 sec, and into Compact I during 5 sec.

DESTINY’S INDICATORS

Thus the inquiry applied to music leads us to the innermost parts of our
mind. Modern axiomatics disentangle once more, in a more precise manner
now, the significant grooves that the past has etched on the rock of our
being. These mental premises confirm and justify the billions of years ol
accumulation and destruction of signs. But awareness of their limitation,
their closure, forces us to destroy them.

All of a sudden it is unthinkable that the human mind forges its con-
ception of time and space in childhood and never alters it.?! Thus the
bottom of the cave would not reflect the beings who are behind us, but
would be a filtering glass that would allow us to guess at what is at the very
heart of the universe. It is this bottom that must be broken up.
Consequences: 1. It would be necessary to change the ordered structures of
time and space, those of logic, . . . 2. Art, and sciences annexed to it, should
realize this mutation.

Let us resolve the duality mortal-eternal: the future is in the past and
vice-versa; the evanescence of the present is abolished, it is everywhere at
the same time; the Aere is also two billion light-years away. . . .

The space ships that ambitious technology have produced may not
carry us as far as liberation from our mental shackles could. This is the
fantastic perspective that art-science opens to us in the Pythagorean-
Parmenidean field.
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Chapter IX

New Proposals in Microsound
Structure

FOURIER SERIES-BASIC IMPORTANCE AND INADEQUACY

The physico-mathematical apparatus of acoustics [2, 23] is plunged into the
theories of energy propagation in an elastic medium, in which harmonic
analysis is the cornerstone.

The same apparatus finds in the units of electronic circuit design the
practical medium where it is realized and checked.

The prodigious development of radio and TV transmissions has expanded
the Fourier harmonic analysis to very broad and heterogeneous domains.

Other theories, quite far apart, €.g., servomechanisms and probability, find
necessary backing in Fourier series.

In music ancient traditions of scales, as well as those of string and pipe
resonances, also lead to circular functions and their linear combinations [24].

In consequence, any attempt to produce a sound artificially could not be
conceived outside the framework of the above physico-mathematical and
electronic apparatus, which relies on Fourier series. )

Indeed the long route traversed by the acousmatics of the Pythagoreans ..
seemed to have found its natural bed. Musical theoreticians did base their
theories on Fourier, more or less directly, in order to support the argument
about the natural harmony of tonality. Moreovér, in defining tonality, the 1
20th-century deprecators of the new musical languages based their argu-
ments on the theory of vibration of elastic bodies and media, that is, in the
end, on Fourier analysis. But they were thus creating a paradox, for al-
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hough they wanted to keep music in the intuitive and instinctive domain,
Fn order to legitimatize the tonal universe they made use of physico-
3 {

mathematical arguments!

The Impasse of Harmonic Analysis and Some Reasons
Two major difficulties compel us to think in another way:

1. The defeat by the thrust of the new languages of the theory accord‘-
ing to which harmony, counterpoint, etc., must. ste‘m, just from th'e basis
formed by circular functions. E.g., how can weJust}fy sucl_l harmonic con-
ﬁgurations of recent instrumental or electro-acoustic music as'a c!oucl F)f

liding sounds? Thus, harmonic analysis has been short-circuited 1’n
gpite of touching attempts like Hindemith’s explana.tilon of Schénber'gs
system [25]. Life and sound adventures jostle the tradlltlonal tlhescs, which
are nevertheless still being taught in the conservatories (rudlmen.ta!ly, of
course). It is therefore natural to think that the disruptions in music in t_hc
last 60 years tend to prove once again that music and its “rules” are socio-
cultural and historical conditionings, and hence modifiable. These COI’IdlthI}S
seem to be based roughly on a. the absolute limits of our senses and their
deforming power (e.g., Fletcher contours); 4. our canvass of mental struc-
tures, some of which were treated in the preceding chaptcr.s (ordering,
groups, etc.); ¢. the means of sound production (orchestral instruments,
electro-acoustic sound synthesis, storage and transformation analogue
systems, digital sound synthesis with computers and digital to analogue
converters). If we modify any one of these three points, our socio-cultural
conditioning will also tend to change in spite of an obvious inertia inherent
in a sort of “entropy” of the social facts.

2. The obvious failure, since the birth of oscillating circuits in elec-
tronics, to reconstitute any sound, even the simple sounds of some orchestral
instruments! a. The Trautoniums, Theremins, and Martenots, all pre-
World War II attempts, prove it. b. Since the war, all ““electronic” music
has also failed, in spite of the big hopes of the fifties, to pull electro-acoustic
music out of its cradle of the so-called electronic pure sounds produced by
frequency generators. Any electronic music based on such sounds on.ly, 18
marked by their simplistic sonority, which resembles radio atmospherics or
heterodyning. The serial system, which has been used so much b}z eief:tr.omc
music composers, could not by any means improve the result, since it itself
is much too elementary. Only when the “pure” electronic sounds were
framed by other “concrete” sounds, which were much richer and much
more interesting (thanks to E. Varese, Pierre Schaeffer, and Pierre Henry),
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could electronic music become really powerful, ¢. The most recent attemp
to use the flower of modern technology, computers coupled to convert

have shown that in spite of some relative successes [26], the sonorous resy]
are even less interesting than those made ten years ago in the cla
electro-acoustic studios by means of frequency generators, filters, mod
tors, and reverberation units,

In line with these critiques, what are the causes of these failures? In
my opinion the following are some of them:

1. Meyer-Eppler’s studies [1] have shown that the spectral anal
of even the simplest orchestral sounds (they will form a reference system
a long time to come) presents variations of spectral lines in frequency
well as in amplitude. But these tiny (second orderj variations are among
those that make the difference between a lifeless sound made up of a sum
harmonics produced by a frequency generator and a sound of the same s
of harmonics played on an orchestral instrument. These tiny variatios
which take place in the permanent, stationary part of a sound, wou
certainly require new theories of approach, using another functional ba
and a harmonic analysis on a higher level, ¢.g., stochastic processes, Mark
chains, correlated or autocorrelated relations, or theses of pattern and for
recognition. Even so, analysis theories of orchestral sounds [27] wou
result in very long and complex calculations, so that if we had to simula
such an orchestral sound from a computer and from harmonic analysis on
first level, we would need a tremendous amount of computer time, which
impossible for the moment.

2. It seems that the transient part of the sound is far more important
than the permanent part in timbre recognition and in music in general [28
Now, the more the music moves toward complex sonorities close to “noise,
the more numerous and complicated the transients become, and the more
their synthesis from trigonometric functions becomes a mountain of diffi

that led to the kinetic gas theory. I'.'

3. There is no pattern and form recognition theory, dependent on
harmonic analysis or not, that would enable us to translate curves synthe-
sized by means of trigonometric functions in the perception of forms or
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configurations. For instancc,' it is impossible ﬁ'n_" us to define equi.valence
classes of very diversified oscilloscope curves, ‘wl.nch' the ear throws. into the
same bag. Furthermore, the ear makes no dlstmcttop between tl.nngs th_at
actual acoustic theories differentiate (e.g., phase differences, differential
sensitivity ability), and vice versa.

The Wrong Concept of Juxtaposing Finite Elements

Perhaps the ultimate reason for such difficulties lies in ll‘l(.’. imlprov%sed
entanglement of notions of finity and infinity. Flor c‘xamp.le, in smusmdg.l
oscillation there is a unit element, the variation included in 2‘:1-. Then th¥s
finite variation is repeated endlessly. Seen as.an'econonrly of means, this
procedure can be one of thf: possible optimizations. We‘labo‘r .durmg. a
limited span of time (one period), then repeat the product indefinitely with
almost no additional labor. Basically, therefore, we have a mcche‘misr_n
(e.g., the sine function) engendering a fin.itc Femporal O?)‘]E'.Ct, which is
repeated for as long as we wish. This long object is now considered as a new
element, to which we juxtapose similar ones. The odds are that one can
draw any variation of one variable (e.g., atmospheric pressure) as a function
of time by means of a finite superposition (sum) of the preceding elements.
In doing this we expect to obtain an irregular curve, with increasing irregu-
larity as we approach “noises.” On the oscilloscope such a curve would
look quite complex. If we ask the eye to recognize particular forms or
symmetries on this curve it would almost certainly be unal?le to make any
judgment from samples lasting say 10 microseconds because it would ha'..fe to
follow them too fast or too slowly: too fast for the everyday limits of visual
attention, and too slow for the TV limits, which plunge the instantaneous
Judgment into the level of global perception of forms and colors. On t‘hc
other hand, for the same sample duration, the ear is made to recognize
forms and patterns, and therefore senses the correlations between fragments
of the pressure curve at various levels of understanding. We ignore the
laws and rules of this ability of the ear in the more complex and general
cases that we are interested in. However, in the case in which we superpose
sine curves, we know that below a certain degree of complexity the ear
disentangles the constituents, and that above it the sensation is transformed
into timbre, color, power, movement, roughness, and degree of disorder;
and this brings us into a tunnel of ignorance. To summarize, we expect that
by judiciously piling up simple elements (pure sounds, sine functions) we
will create any desired sounds (pressure curve), even those that come close
to very strong irregularities—almost stochastic ones. This same statement
holds even when the unit element of the iteration is taken from a function
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other than the sine. In general, and regardless of the specific function of

unit element, this procedure can be called synthesis by finite juxtaposed elemen
In my opinion it is from here that the deep contradictions stem that sho
prevent us from using it.*

NEW PROPOSAL IN MICROCOMPOSITION BASED ON
PROBABILITY DISTRIBUTIONS

We shall raise the contradiction, and by doing so we hope to open g
new path in microsound synthesis research—one that without pretending
to be able to simulate already known sounds, will nevertheless laun
music, its psychophysiology, and acoustics in a direction that is quite inteps
esting and unexpected. .

Instead of starting from the unit element concept and its tireless iteration
and from the increasing irregular superposition of such iterated unit cle.
ments, we can start from a disorder concept and then introduce means that
would increase or reduce it. This is like saying that we take the inverse ro
We do not wish to construct a complex sound edifice by using discontinuoy
unit elements (bricks = sine or other functions); we wish to construct
sounds with continuous variations that are not made out of unit elements,
This method would use stochastic variations of the sound pressure directly,
We can imagine the pressure variations produced by a particle capriciously
moving around equilibrium positions along the pressure ordinate in a non-.
deterministic way. Therefore we can imagine the use of any “random
walk” or multiple combinations of them., ]

Method 1. Every probability function is a particular stochastic varia-
tion, which has its own personality (personal behavior of the particle). We
shall then use any one of them. They can be discontinuous or continuous;e.g.,
Poisson, exponential (ce~cx), normal, uniform, Cauchy (t[rr(tz+x2)]‘1)_;f
arc sin (m~[x(1 —x)]-12), logistic [(ae~*-5)(] +e7%*=#)-1] distributions.

Method 2. Combinations of a random variable X with itself can be
established. Example: If f(x) is the probability function of X we can form
=X+ X +--. 4+ X, (by means of the n-fold convolution of f(x)

with itself) or P, = X,.X,.. - Xk, or any linear, polynomial, . . ., function
of the variable X, il

* In spite of this criticism I would like to draw attention to the magnificent manipu-
latory language Music V of Max V. Mathews, which achieves the final step in this
procedure and automates it [29]). This language certainly represents the realization of.
the dream of an electronic music composer in the fifties,
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Method 3. The random variables (pressure, time) can be functions of

r variables (elastic forces), even of random varia_bles. Examp]e:' The
o re variable x is under the influence of a centrifugal or centripetal
for:;:'—;(x, t). For instance, if the particle (presslure) is i’nﬂuenced byt}al. f:rict:
wx (w being a constant) and also obeys a Wiener-Lévy process, the

density will be

g% y) = (@'2[[m(1 — e~ 22t)]~12) exp [—w(y — xe~¥)2/(1 — ¢~ 294)],

where x and y are the values of the variabl'e at the instants 0 and ¢,
respectively. (This is also known as the Ornstein-Uhlenbeck ptl"ocess.) :
Method 4. The random variable moves between two reflecting (.elastlc)
barriers. Example: If we again have a Wiener-LéV){ pmccss'wuh two
reflecting barriers at @ > 0 and zero, then the density of this random

walk will be
+ >
qi%,y) = (2mt) Y2 > (exp [~ (y — x + 2ka)?/2¢]
T expl=(y + x + 2a)21]),

where x and y are the values of the variables at the instants 0 and ¢,
espectively;iand £ = 0,41, 42 . 1, - ; .
k- Method 5. The parameters of a probability function can l?e considered
as variables of other probability functions (randomization, mixtures) [30].
Examples: (e YR
a. tis the parameter of a Poisson distribution f(k) = (at)"(k!)ﬂ S
and the random variable of the exponential density g(¢) = Be #. The
combination is

-

S (k) » g(t) =w(k) = Jm (at)*(k!) e~ Be™ " dit =P(a+B) ~*[a(a+B) '],

which is a geometric distribution. ik

b. p and ¢ are the probabilities of a random walk w1.th Jumps il
(Bernoulli distribution). The time intervals between successive jumps are
random variables with common density ¢~* (Poisson distribution). Thcn ?;)ze
probability of the position n at instant ¢ will be £,(t) = I,(2¢v/pg)e(p/q)™2,
where

I(x) = i [KIT(k + n + 1)]~1(x/2)2k*n

is the modified Bessel function of the first kind of order n.
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Method 6. Linear, polynomial, ..., combinations of probabilig
functions f; are considered as well as composite functions (mixtures of
family of distributions, transformations in Banach space, subordinatie
etc.). !

a. If A4 and B are any pair of intervals on the line, and Q(4, B)
prob {X € 4, ¥ € B} with g(x, B) = prob {X = x, ¥ € B} (g, under appre
priate regularity conditions being a probability distribution in B for
given x and a continuous function in x for a fixed B; that is, a conditio '
probability of the event {Y € B}, given that X = x), and u{A}is a probabilj
distribution of x€ 4, then Q(4, B) = _fA q(x, B)u{dx} represents a mixtu
of the family of distributions ¢(X, B), which depends on the parameter“
with u serving as the distribution of the randomized parameter [30]. |

b. Interlocking probability distributions (modulation). If £, f3, .
Jn are the probability distributions of the random variables A A
X™, respectively, then we can form ,

S =X+ Xf+---+ X} and SYDSL) =S4, + 52 +... 4 408
i=1 T
or

n
Foe = A3 A3 X5 and | PYTTPR) = PL PSPy,

k=1
or any combination (functional or stochastic) of these sums and products
Furthermore, the oi and vk could be generated by either independe
determined functions, independent stochastic processes, or interrelate
determined or indetermined processes. In some of these cases we would
ha\.fe the theory of renewal processes, if, for instance, the oi were considered
waiting times 7i. From another point of view, some of these cases wou c
also correspond to the time series analysis of statistics. In reality, the e v
seems to realize such an analysis when in a given sound it recognizes t
fundamental tone pitch together with timbre, fluctuation, or casua
:.lrregularities of that sound! In fact, time series analysis should have been
invented by composers, if they had—. ) o
2 Subordination [30]. Suppose {X()}, a Markovian process with
continuous transition probabilities b

Qx, T) = prob {X(T(t + s)) € T|X(T(s)) = x)

(stoch_astif: kernel independent of ), and {T(t)}, a process with non'w:?
negative independent increments. Then {X(7'(£))} is a Markov process
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with transition probabilities

P,(x,T) = f : Q. (x, T) Uyds),

where U, is the infinitely divisible distribution of T'(¢). This P, issaid to be
subordinated Lo {X (1)}, using the operational time T'(t) as the directing process.

Method 7. The probability functions can be filed into classes, that is,
into parent curve configurations. These classes are then considered as
elements of higher order sets. The classification is obtained through at
Jeast three kinds of criteria, which can be interrelated: 4. analytical source
of derived probability distribution; gamma, beta, . . ., and related densi-
ties, such as the density of x* with n degrees of freedom (Pearson) ; Student’s
¢ density; Maxwell’s density; 4. other mathematical criteria, such as
stability, infinite divisibility; and ¢. characteristic features of the curve
designs: at level 0, where the values of the random variable are accepted
as such; at level 1, where their values are accumulated, etc.

Macrocomposition

Method 8. Further manipulations with classes of distributions envisaged
by Method 7 introduce us to the domain of macrocomposition. But we
will not continue these speculations since many things that have been ex-
posed in the preceding chapters could be used fruitfully in obvious ways.
For example, sound molecules produced by the above methods could be
injected into the ST(ochastic) program of Chap. V, the program forming
the macrostructure, The same could be said about Chaps. II and III
(Markovian processes at a macrolevel). As for Chaps. VI and VIII (sym-
bolic music and group organization) establishing a complex microprogram
is not as easy, but it is full of rich and unexpected possibilities.

All of the above new proposals are being investigated at the Centers
for Mathematical and Automated Music (CMAM) at both the School of
Music of Indiana University, Bloomington, Indiana, and the Nuclear
Research Center of the Collége de France, in Paris. Digital to analogue
converters with 16 bits resolution at a rate of 0.5-10° samples per second
are available in both places.

Figs. IX, 1-8 were calculated and plotted at the Research Computing
Center of Indiana University under the supervision of Cornelia Colyer.
These graphs could correspond to a sound duration of 8 milliseconds, the
ordinates being the sound pressures.
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1Iflg IX-2. Exponential x Cauchy Densities with Barriers and Randomized
ime
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Chapter X

Concerning Time, Space and Music*

WHAT IS A COMPOSER?

A thinker and plastic artist who expresses himself through sound beings.
These two realms probably cover his entire being.

A few points of convergence in relation to time and space between the
sciences and music:

First point:

In 1954, I introduced probability theory and calculus in musical
composition in order to control sound masses both in their invention and in
their evolution. This inaugurated an entirely new path in music, more global
than polyphony, serialism or, in general, “discrete” music. From hence came
stochastic music. I will come back to that. But the notion of entropy, as
formulated by Boltzmann or Shannon,! became fundamental. Indeed, much
like a god, a composer may create the reversibility of the phenomena of
masses, and apparently, invert Eddington’s “arrow of time.”? Today, I use
probability distributions either in computer generated sound synthesis on a
micro or macroscopic scale, or in instrumental compositions. But the laws of
probability that I use are often nested and vary with time which creates a

*Excerpts of Chapter X originally appeared in English in Perspectives of New Music,
Vol. 27, N° 1. Those excepts appeared originally in French in Redécouvrir le Temps,
Editions de I'Université de Bruxelles, 1988, Vol. 1-2.
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stochastic dynamics which is aesthetically interesting. This procedure is a
to the mathematical analysis of Liouville's equation on non-unitap
transformations proposed essentially by I. Prigogine;> namely, if
microscopic entropy M exists, then M = Az, where A acts on the distrib
function or the density matrix. A is non-unitary which means that it does
maintain the size of probabilities of the states considered during the evolutj
of the dynamic system, although it does maintain the average values of th
which can be observed. This implies the irreversibility of the system to
equilibrium state; that is, it implies the irreversibility of time.

Second point:

This point has no obvious relationship to music, except that we coy
make use of Lorentz-Fitzgerald and Einstein transformations in

macroscopic composition of music.* I would nevertheless like to make some
comments related to these transformations. i

~ We all know of the special theory of relativity and the equations
Lorentz-Fitzgerald and Einstein, which link space and time because of ¢
finite velocity of light. From this it follows that time is not absolute. Yet
is always there. It “takes time” to go from one point to another in space,
if that time depends on moving reference frames relative to the obse _
There is no instantaneous Jump from one point to another in space, much
less “spatial ubiquity”—that is, simultaneous presence of an event or a
object in two sites in space. On the contrary, one posits the notion «
displacement. Within a local reference frame, what then does displaceme;
signify? If the notion of displacement were more fundamental than that
time, one could undoubtedly reduce all macro and microcosmi
transformations to extremely short chains of displacement. Consequentl
(and this is an hypothesis that 1 freely advance), if we were to adhere ‘
quantum mechanics and its implications accepted now for decades, we woull
perhaps be forced to admit the notion of quantified space and its corollary
quantified time. But then, what could a quantified time and space signify, a
time and space in which contiguity would be abolished? What would the
pavement of the universe be if there were gaps between the paving stones,
inaccessible and filled with nothing? Time has already been proposed h
having a quantic structure by T. D. Lee of Columbia University. M
Let us return to the notion of time considered as duration. Even after
the experimental demonstration of Yang and Lee which has abolished the
parity symmetry P} it seems that the CPT theorem still holds for the
symmetries of the electron (C) and of time (7)), symmetries that have not yet :_4
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ompletely annulled. This remains so even if -the “arrow -of time”
E to be nonreversible in certain weak interactions of particles. We
ap-Pears]so consider the poetic interpretation of Feynman,® who hold_s that
e sitron (a positively charged particle created simultaneously with an
whena})x::olliclv::s with an electron, there is, in reality, only one electron
elecmntlhan three elementary particles, the positron being nothing but the
ratlwrml retrogression of the first electron. Let us also not forget the t:heory
“}nﬁngrade time found in Plato’s Politicos—or in the future contraction of
:hc universe. Extraordinary visions! . - .
Quantum physics will have difficulty dmtzov..rt_anng the tevens “1ty o
time, a theory not to be confused with the reversibility of Bctltzmann s “arrow
fc;'ltropy.” This difficulty is reflected in the explanations that certzn
ohysicists are attempting to give even today for the phenomenon (:alle;it hats:
“delayed choice” of the two states—corpuscular or wave —of adphou?n.l i,
been proven on many occasions that the states depen h:rftlre %h 7
observation, in compliance with the thcses.of quantum mec. mct;. P
explanations hint at the idea of an “intervention of the_presenl: 1nlt)o : e Ened
contrary to the fact that casuality in quantum maj:chamcs cannot the mvrtjde.
For, if the conditions of observation are established to detect the pad -cé
then one obtains the corpuscular state and never the wave stzftcﬁian fv:h i
versa. A similar discussion on non-temporality and the urev?mlb tyhe7
notion of causality was undertaken some time ago by Hans Reichenbach.

Another fundamental experiment has to do wlt.h the correl:.auon of the
movement of two photons emitted in opposite directions by a -smg:; atomli
How can one explain that both either pass through two polarizing [(I;.S,. o
that both are blocked? It is as if each photon “knew” 'what the other was oing
and instantaneously so, which is contrary to the special theory :Of rele?.l:m.ty.

Now, this experiment could be a starting point for the mvesl:fga.\uon Iorf
more deeply seated properties of space, freed from .t_he tutelage o tml:?. ;
this case, could the “nonlocality” of quantum mecl}amf_:s perl.la[_Js be exp n;e '
not by the hypothesis of “hidden variables” in wh1c1.1 time still mtervel;es, cl;
rather by the unsuspected and extravagent properties of nontemporal space,
such as “spatial ubiquity,” for example? . 4

Let us take yet one more step. As space is perceptible only atchr.oss £ i
infinity of chains of energy transformations, it could very well be no mtg fua
an appearance of these chains. In fact, let us consider t1.1e r.novemen :bc
photon. Movement means displacement. Now, could this dxspl.acemf_-n
considered an autogenesis of the photon by itself at each step of its trajectory




s Formalized M

(continuous or quantized)? This continuous auto- creation of the ._'_f_
could it not, in fact, be space?
i
Third point: Case of creating something from nothing A
In musical composition, construction must stem from originality whic

can be defined in extreme (perhaps inhuman) cases as the creation of g
rules or laws, as far as that is possible; as far as possible meaning original, ne;
yet known or even forseeable. Construct laws therefore from nothing, since
without any causality.
But a construction from nothing, therefore totally engendered, totall '.
original, would necessarily call upon an infinite mass of rules duly entangled,
Such a mass would have to cover the laws of a universe different from o Ir
own. For example: rules for a tonal composition have been constructed, Suc'\
a composition therefore includes, a priori, the “tonal functions.” It also -
includes a combinatory conception since it acts on entities, sounds, as define d
by the instruments. In order to go beyond this slight degree of originality,
other functions would have to be invented, or no functions should exist at all,
One is therefore obliged to conceive of forms from thoughts bearing no
relation to the preceeding ones, thoughts without limits of shapes and"'
without end. Here, we are obliged to progressively weave an unlimited weh
of entangled rules—and that alone in the combinatory realm which itself
excludes, by definition, any possible continuums of sound. However, the 3
insertion of continuity will consequently augment the spread of this web and
its compacity. Furthermore, if one cared to engender the unengenderable in
the realm of sound, then it would be necessary to provide rules other than
those for sound machines such as pipes, strings, skins, etc. which is possible
today thanks to computers and corresponding tcchnologics. But technology is
both but a semblance of thought and its materialisation. It is therefore butan
epiphenomenon in this discussion. Actually, rules of sound synthesis such as
those stemming from Fourier series should not be used any more as the basis
of construction. Others, different ones, must be formulated. ]

Another perspective: We have seen how construction stems from an
originality which is defined by the creation of rules and laws outside of an
individual’s or even the human species’ memory. However, we have left aside !
the notion of rules or laws. Now the time has come to discuss this notion. A
rule or law signifies a finite or infinite procedure, always the same, applied to
continuous or “discrete” elements. This definition implies the notion of ]
repetition, of recurrence in time, or symmetry in realms outside time (hors
temps). Therefore, in order for a rule to exist, it must be applicable several
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:mes in eternity’s space and time. If a rule were to exis-t but onc.e, it would be
. ed up in this immensity and reduced to a single point, therefore
sw?,lll;::rvable. In order for it to be observable, it must be repeatable an
;lnl}inite number of times. o

Subsidiary question: Can one repeat a phnnon:enon? (cf. Hera%leltos. t
is impossible to step twice into the same river,” and Kratylos: “not even

once.”) .
But the fact remains that the universe:

a) seems, for the time being, to be made up of rules-procedures;

b) that these rules-procedures are recurrent.
It is as though the Being (in disagreement with Pa-rmen.jdes), in order .to corlx-
tinue existing, is obliged to die; and once dead, is obliged to start his cycle
again. Existence, therefore, is a dotted line. . | ‘

Can one, at last, imagine an infinitesmal microscopic rule t.hat is
engendered from nothing? Even if phys_ics has yet to filsc-ovcr an)_rthmg
resembling this, despite “Lamb’s shift” (whlcl} sees each pnmt in space in our
universe as seething in virtual pairs of particles and anti-particles), we can
imagine such an eventuality which would, by the wny, be of the same nature
as the fact of pure chance, detached from any causality. -

It is necessary to depend on such a conclusion of a Unlversn open to_ the
unprecedented which relentlessly would be fm"med or woult‘:i dlsappf:ar in a
truly creative whirlwind, beginning from nothingness and d’lsappc-anng into
nothing. The same goes for the basis of art as well as for man’s destiny.

Here, below, is the thesis of a few astrophysicians such as Edwal_‘d
Tryon, Alexander Vilenkin, Alan Guth, Paul Steinhardt, adherents to the Big

Bang theory:

If grand unified theories are correct in their pre:diction'that baryon
number is not conserved, there is no known conservation law. that
prevents the observed universe from evolving out of nothing. The mfla-
tionary model of the universe provides a possible mechnms_m by wl:nch
the observed universe could have evolved from an infinitesimal reglc?n.
It is then tempting to go one step further and spf:cu.late that .t.he entire
universe evolved from literally nothing. (cf. Scientific American, May,
1984)

The multiplicity of such universes according to Linde® from Moscow is
also quite intriguing.




Rather than the Universe being born of an explosion, they propose that
it appeared ex-nihilo following an instability of the minkonskian quan-
tum void, meaning that Space-time was devoid of any matter, therefore
flat or yet-without any curvature.” (cf. Coveney, Peter V
“L’irreversibilité du temps,” La Recherche, Paris, Fi ebruary, 1989).°

bt 4

What is extraordinary is that both propositions, Big Bang or not, '

a begi nning, an origin from nothing, or nearly nothing with, however, cycl
of re-creation! With a most extreme modesty, I would like to compa '
especially the last hypothesis, with a scientific-musical vision T had made
1958. At that time, T wanted to do away with all of the inherited rules
composition in order to create new ones. But the question that came to m
mind at that time was whether a music could still have meaning even if it was
not built on rules of occurence. In other words, void of rules. Below are the i

steps in this thought process:
“For it is the same thing to think and to be”

(The Poem, Parmenides)

'
3

and my paraphrase

“For u is the same thing not to be and to be”
Ontology:

cide (nil Time), perpetually triggering off,
N othjngness resorbs, creates.

It is the generator of Being.
Time, Causality.

This text was first published in Gravesaner Blatter, N° 11/12, 1958, the
revue published by the great conductor, Hermann Scherchen. At that time, T !:'
had temporarily resolved this problem in creating music uniquely through the
help of probability distributions. I say “temporarily” since each probability
function has its own finality and therefore is not a nothing.* ‘

*Cf. also page 24 fora slightly different rendition of the same material (S.K.)
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Another question . \

The actual state of knowledge seems to be the 'm-amfestau(::n of the
evolution of the universe since, let us say, some fifteen billion years. By thabt,
[ mean that knowledge is a secretion of the history of 'humamty, prod_uced y
this great lapse of time. Assuming this hypothes:ls, all that Wh.‘lf.‘l} (I)Jur
individual or collective brain hatches as ideas, theo.nes or kno‘-\.r-how, is but

output of its mental structures, formed by the history of the 11:mumf3rable
izvements of its cultures, in its anthropomorphic.: nansformatlon:e., in the
evolution of the earth, in that of the solar system, in that of the umvetfe. If
this is so, then we face a frightening, fundamenta_l dO}lbt as to the tr-ue
objectivity” of our knowledge and know-how. For if, with bio-technologies
already developing, one were to transform these mti:n,t;-al structures (c!ur own;
and their heredity,therefore the rules for the funclmt?mg of the brain _base
on certain premises today, on logic or systems of Iogxc_, and so on ..., 1f one
were to succeed in modifying them, one would gain, as if by :%ort ofa mlrac.le,
another vision of our universe, a vision which would be built upon theories
and knowledge which are beyond the realm of our present thought. .

Let us pursue this thought. Humanity is, I believe, already on tlns path.
Today, humanity, it seems to me, has already takffn the first steP in a new
phase of its evolution, in which not only the mutations of the brain, but also
the creation of a universe very different from that which pl:esently surrount'is
us, has begun. Humanity, or generalizing, the species which may follow it,
will accomplish this process. :

Music is but a path among others for man, for his s-pecui:s, ﬁ'l'f‘St. to
imagine and then, after many, many generations, to entail tlns ex1stm'g
universe into another one, one fully created by man. Indeed, 1f'ma}n, his
species, is the image of his universe, then man, by virt.ue of the pl:lnClp]C of
creation from nothingness and disappearance into nothmgne§s (wh'xch we are
forced to set), could redefine his universe in harmony with his creative
essence, such as an environment he could bestow upon himself.

IN MUSIC

In the following comments, the points of view on time are taken frf)m
music in gestation or under observation. This is not to say t:ha.tt my preceding
comments do not concern the musician. On the contrary, if it is incumbent on
music to serve as a medium for the confrontation of philosophic or scientific
ideas on the being, its evolution, and their appearances, it is essential -that _the
composer at least give some serious thought to these types of inquiry.
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Furthermore, I have deliberately not approached the psycholog
apprehension of time from higher levels, for example, the effects of g
temporal dynamic experience while listening to a symphony or to electro:
music. :

What is time for a musician? What is the flux of time which pas
invisibly and impalpable? In truth, we seize it only with the help of percep
reference-events, thus indirectly, and under the condition that th
reference-events be inscribed somewhere and do not disappear with
leaving a trace. It would suffice that they exist in our brain, our memory. It s
fundamental that the phenomena-references leave a trace in my memory, for
if not, they would not exist. Indeed, the underlying postulate is that time,
the sense of an impalpable, Heraclitian flux, has signification only in relation
to the person who observes, to me. Otherwise, it would be meaningless. Even
assuming the hypothesis of an objective flux of time, independant from me,
its apprehension by a human subject, thus by me, must be subject to the
phenomena-reference of the flux, first perceived, then inscribed in m
memory. Moreover, this inscription must satisfy the condition that it be in
manner which is well circumscribed, well detached, individualized, without
possible confusion. But that does not suffice to transform a phenomenon that -
has left traces in me into a referential phenomenon. In order that this
trace-image of the phenomenon become a reference mark, the notion of
anteriority is necessary. But this notion seems to be circular and as
impenetrable as the immediate notion of flux. It js a synonym. Let us alter
our point of view, if only slightly. When events or phenomena are
synchronic, or rather, if all imaginable events were synchronic, universal
time would be abolished, for anteriority would disappear. By the same token,
if events were absolutely smooth, without beginning or end, and even
without modifications or “perceptible” internal roughness, time would
likewise find itself abolished. It seems that the notion of separation, of
bypassing, of difference, of discontinuiity, which are strongly interrelated, are
prerequisite to the notion of anteriority. In order for anteriority to exist, itis
necessary to be able to distinguish entities, which would then make it possible
to “go” from one to the other. A smooth continuum abolishes time, or rather
time, in a smooth continuum, is illegible, inapproachable. Continuum is thus
a unique whole filling both space and time. We are once again coming back
to Parmenides. Why is space included among those things that are illegible?
Well, because of its non-roughness. Without separability, there is no

extension, no distance. The space of the universe would find itself condensed
into a mathematical point without dimensions, Indeed, Parmenides’ Being,
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oy i i bsolutely smooth
which fills all space and eternity, would be nothing but an absolutely
“ ematical point.”

mﬂthlﬂ us gc:) back to the notion of separability, first in ﬁme: At the le:jlst,

arability means non-synchronisation. We discover once again the notion

P teriority. It merges with the notion of temporal ordering. The ordering
P an'oity admits no holes, no empty spaces. It is necessary for one separa_ble
antfl‘lw be contiguous with the next, otherwise, one is subject to a confusion
e?:itzle Two chains of contiguous events without a commmon link can be
" differ;ently synchronous or anterior in relation to each other; time is once
. in abolished in the temporal relation of each of the universes Tepresented
;ga[he two chains. On the contrary, local clocks serve as chains without gaps,
but only locally. Our biological beings have a_l'so devel-oped local .clock; It)l:;t
they are not always effective. And memory is A spatial translation of the
temporal (causal) chains. We will come back to this.

I have spoken of chains without gaps. At tl}e moment.and to my
knowledge, local gaps have not yet been discov?r.ed in Sl-lb-atol‘fllc p_hysms_ or
in astrophysics. And in his theory of the I"ela_twlty m'c time, Ei.nstem tac:lt;‘ly
accepts this postulate of time without gaps in local cl?ams, but his l:heor)r.a' 0
constructs special chains without gaps between spatlfill.y. separ-a\ble lo-?almes.
Here, we are definitely not concerned with the rever.slbfllty of time \'v\’h.lch was
partially examined above in light of recent discoveries in sub-atomic physics,
for reversibility would not abolish time.

Let us examine the notion of separability, of discontinuity in space. Our
immediate consciousness (a mental category?) allows us to in?ag'i_ne s.ffparated
entities which, in turn, necessitate contiguity. A void is a unity m_thjs sense,
contrarily to time, in which our inherited or acquired mcntz?l notions ba-r us
from conceiving the absence of time, its abolition, as an entity sl_la'nng time,
the primordial flux. Flux either is, or is not. We exjst,' therefore 1F 1s: For the
moment, one cannot conceive of the halting of time. z:&ll_ this is not a
paraphrase of Descartes or better yet, of Parme:nides: it is a presently'/
impassable frontier. (But certainly, by using Parmenides once more, passable:
“TO I'AP AYTO NOEIN EXTIN TE KAI EINAI”).

To get back to space, the void can be imagined as a dwindling- of the
entity (phenomenon) down to an infinitesimal tenuousness, having no
density whatsoever. On the other hand, to travel from one entity to another is
a result of scale. If a person who voyaged were small, the person .would nc:t
encompass the totality of entities, the universe at once. .But 1.f this person’s
scale were colossal, then yes. The universe would offer itself in one stroke,
with hardly a scan, as when one examines the sun from afar.
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The entides would appear, as in a snapshot, reunited in a den
network of nontemporal contiguities, uninterrupted, extending through
entire universe. I said, in a snapshot. This is to say that in the snapshot, the
spatal relations of the entities, the forms that their contiguities assume,
structures, are essentially outside time (hors-temps). The flux of time do
not intervene in any way. That is exactly what happens with the traces
the phenomenal entities have left in our memory. Their geographical map
outside time.

Music participates both in space outside time and in the temporal fl
Thus, the scales of pitch; the scales of the church modes; the morphologies
higher levels; structures, fugal architectures, mathematical formu
engendering sounds or pieces of music, these are outside time, whether o
paper or in our memory. The necessity to cling against the current of th
river of time is so strong that certain aspects of time are even hauled out of
such as the durations which become commutable. One could say that every.
temporal schema, pre-conceived or post-conceived, is a representatio
outside time of the temporal flux in which the phenomena, the entities, are
inscribed. .

Due to the principle of anteriority, the flux of time is locally equippe
with a structure of total order in a mathematical sense. That is to say that
image in our brain, an image constituted by the chain of successive events,
can be placed in a one-to-one correspondance with the integers and even;
with the aid of a useful generalization, with real numbers (rational and
irrational). Thus, it can be counted. This is what the sciences in general dq;_.l
and music as well, by using its own clock, the metronome. By virtue of thls
same structure of total order, time can be placed in a one-to-one ’.,I
correspondence with the points of a line. It can thus be drawn. !

This is done in the sciences, but also in music. One can now design
temporal architectures—rhythms—in a modern sense. Here is a tentative
axiomatization of the temporal structures placed outside of time: ]
1. We perceive temporal events.

I

2. Thanks to separability, these events can be assimilated to landmark
poinis in the flux of time, points which are instantaneously B
hauled up outside of time because of their trace in our memory.

3. The comparison of the landmark points allows us to assign to them
distances, intervals, durations. A distance, translated spatially,

Concerning Time, Space and Music s

can be considered as the displacement, the step, the jump from
one point to another, a nontemporal jump, a spatial distance.
4. Itis possible to repeat, to link together these steps in a chain.
5. There are two possible orientations, one by an accumulation of
steps, the other by a de-accumulation.
From here, we can construct an object which can be represented by points on
a line, evenly spaced and symbolized by the numeral 1 with index zero: 1, =
(- -3,-2,-1,0,1,2,3,...). This is the regular rhythm, corresponding to the ‘:vl.xole
numbers. As the size of the step is not defined in the preceding propositions
(recalling Bertrand Russell’s observation concerning Peano’s axiomaljf: of
natural numbers'’), we can affix to the preceding object the following objects
which I call “sieves,” by using solely proposition 4:
2y = {...,74,2,0,246,..} or 2, = {...-3,-1,1,3,5,...} or
8, = {..-30369,.}or3 ={.-5-2147..}or
3, = {.-4,-1,2,5,8,...} etc...
From these objects and their modular nature, and with the help of these three
logical operations:
U union, disjunction ex. 2, U 2, = 1,
N intersection, conjunction ex. 2, N2 =0
" complementarity, negation ex. 2, = 2,
we can construct logical functions L—that is to say, very complex rhythmic
architectures which can even go as far as a random-like distribution of points
on a line—if the period is sufficiently long. The interplay between complexity
and simplicity is, on a higher level, another way of defining the landmark
points, which certainly plays a fundamental role in aesthetics, for this play is
juxtaposed with the pair release/tension.
Example of a logical function L:

L=(MN N NP)U (N,UQ U.. T)U..

The upper-case letters designate moduli and the subscripts designate shifts in
relation to a zero point of reference.

Up to this point, we have examined time perceived by means of our
faculties of attention and conscious thought—time on the level of forms and
structures of an order ranging from tens of minutes to approximately one
twenty-fifth of a second. A stroke of the bow is a referrential event that can
define durations of a fraction of a second. Now, there are some subliminal
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ense. And yet, each event, like each individual on earth, is unique. But
no § :

temporal segmentation produced by a very choppy amplitude envelOPe 0 this uniqueness is the equivaler.lt. of death which -hes in ;a:ltc Z:, Ev;:sr};a .:;El 1;1;
the sound of an unvarying sinusoidal wave form. If the duration of the no every moment. Now, the repeuu.on of an event, }ts regr il
long (about one minute), we perceive the rhythms of the beats as s Possible, corresponds to r_hls. struggle against 1saplpe c hal,l i
moving vibratos. If the duration is relatively short (three seconds), the ear pothingness. As if the t.:nure un}vcrse fought despcrate)i e agt sirke
and the brain interpret it as a timbre. That is to say that the result existence, to being, by its own tireless rcnewal.at every ins Ci,es B
subliminal, unconscious counting is different in nature and is recognized a5 death. The union of Parmemf:les and of Hf:rachttfs. LwI:}'lg' spe i iirhe
timbre. 3 example of this struggle of life or .dcath, in an inert Universe e
haps by the Big Bang (is it really inert, that is, wlfhout any changes in

la‘:r‘sP). This same principle of dialectical. combat is present every\.vhenii
verifiable everywhere. Change—for there is no rest«;—me couple death an
pirth lead the Universe, by duplication, the copy being more or less exact.
The “more or less” makes the difference between a pendular, cyclic Urnw_arseci
strictly determined (even a deterministic c'haos), and. a flf)nd'etermm;
Universe, absolutely unpredictable and chatouc. Unpredictability 1n. tho;:g t
obviously has no limits. On a first approach it wouI(zl correspo.nd to birth t-hm
nothingness, but also to disappearance, death into nothingness. At the
moment, the Universe seems to be midway between t'hese two cha?imsi
something which could be the subject of another stut%y'. This study would eua
with the profound necessity for musical c::_umposmon to be perpetually
original—philosophiocally, technically, aesthetically.' ' '

In what follows and as a consequence of the preceeding sdomis, we will
study in greater detail the practical questions of hc-)w to create a s:cv::d Eﬂ=
series of points on a line), beginning from a logical. function of moduli
(periods), or inversely, from a series of points on a line, how %o creatfa a
logical function of moduli which should be able to engenffler the given series.
This time, we shall use series of “ pitches” taken from musical space.

Let us take a brief moment to consider the mechanism of the interna]
ear coupled with the brain which recognizes the wave form—that is to say}
the timbre—and the frequency of a sound. On the one hand, it seems that the
points of deformation of the basilar membrane play a fundamental role in
the recognition; but, on the other hand, a sort of temporal Morse code of
electrical discharges of neurons is taken statistically into account for the
detection of tone. A remarkably complex subliminal counting of time js
taking place. But knowledge of acoustics in this domain is still very limited.

On this subliminal level, here is another disconcerting phenomenon. It
is the result of a new theory on the synthesis of computer sounds which
circumvents the harmronic synthesis of Fourier, practiced everywhere today,a
theory which I introduced now more than fifteen years ago.”2 It is a question
of beginning with any form whatsoever of an elementary wave, and with each
repetition, of having it undergo small deformations according to certain
h densities of probabilities (Gauss, Cauchy, logistic,...) appropriately chosen and
| implemented in the form of an abstract black box. The result of these :
1 deformations is perceptible on all levels, microstructure (= timbre),
ministructure (= note), mesostructure (= polyrhythm, melodic scales of
intensities), macrostructure (= global evolution on the order of some tens of
minutes). ]

If the rate of sampling had been 1,000,000 or 2,000,000 samples per
second instead of approximately 44,100 (commercial standard), one would
have had an effect of sounding fractals, with a sonorous effect which is
impossible to predict. ]

We see to what extent music is everywhere steeped in time: (z) time in
the form of an impalpable flux or (5) time in its frozen form, outside time,
made possible by memory. Time is the blackboard on which are inscribed
phenomena and their relations outside the time of the universe in which we
live. Relations imply architectural structures, rules. And, can one imagine a
rule without repetition? Certainly not. I have already treated this subject. _!'
Besides, a single event in an absolute eternity of time and space would make




Chapter XI

Sieves*

In music, the question of symmetries (spatial identities) or of periodi
(identities in time) plays a fundamental role at all levels: from a sample
sound synthesis by computers, to the architecture of a piece. It is thus ne
sary to formulate a theory permitting the construction of symmetries wh
are as complex as one might want, and inversely, to retrieve from a giv

series of events or objects in space or time the symmetries that constitute ¢
series. We shall call these series “sieves.”!

Everything that will be said here could be applied to any set
characteristics of sound or of well-ordered sound structures, and especially,
any group which entails an additive operation and whose elements
multiples of a unity; that is to say that they belong to the set N of na
numbers. For example: pitches, time-points, loudnesses, densities, degrees
order, local timbres, etc, In the case of pitches, there must be a distinc
between sieve (scale) and mode. Indeed, the white keys on a piano constituf
a unique sieve (scale) upon which are formed the “modes” of C major, D, E,
G, A (natural minor), etc. Just like Indian ragas or Olivier Messiaen’s modes

T
“of limited transpositions,” modes are defined by cadential, harmonic, et_:;_’:il

formulas.

But every well-ordered set can be represented as points on a line, a I
long as a reference point is given for the origin and a length u for the unit
distance, and this is a sieve. Historically, the invention of the well-tempe .

*This chapter is scheduled to appear in a future issue of Perspectives of New Muski:-\.l;
John Rahn’s personal contribution to the following material is most appreciated

i-.
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s |
- tic scale, attributed to the Renaissance, is of upmost importa'nce since
Chrom:"ld d a universal standarization of the realm of pitches, as fertile as that
4 '1'0“'1 l:eady existed for rhythm. However, it should be remembered that
e : theoretical attempt towards such an approach which opened the path
3 Tr:lber theory in music dates back to Aristoxenas of Tarent, during the
;:[:}11 century B.C., in his “Harmonics.”?

CONSTRUCTION OF A SIEVE

Starting from symmetries (repetitions), let.us ca.mstruct a sieve (scale).
As a melodic example, we shall construct the diatonic scale formed by the
white keys of the piano. :

With u = one semitone = one millimeter and a zero refc:renc:f:e pf)mt
taken arbitrarily on a note, for example C3, we can notate the 'dlammc mev:
(scale) on graph paper scaled to the rnillimetel:, by means ot: points to the le (;
and to the right of this zero reference point with successive 11.1tf:rvals counte:
from left to right of 2, 2, 1,2, 2,2, 1,2, 2,1, 2, 2, 2, 1,... millimeters, or we
can write the sieve in a logical-arithmetic notation as L = 12, U 12 U-;;‘ L;
12, U 12, U 12, U 12, where 12 is the modu'lus o‘f the symmetry (period) o
the octave with u for the semitone. This notation gives all the _C.s, all the Ds, ...
all the Bs, considering that the moduli 12 repeat on both sides of thct ze10
reference point. The indices, 0, 2, 4, 5, 7, 9, 11 of the modulus 12 signify
shifts to the right of the zero of the modulus 12. They also represent the
residue classes of congruence mod. 12.

With a different unit distance u, for example, a quartertone, one wm.xld
have the same structure as the diatonic scale but the period of the series
would no longer be an octave, but an augmented fourth.

In a similar fashion, a periodic rhythm, for example 3, 3, 2:

) el e

can be notated as L = 7, U 7, U 7. In both of these examples, t.h:‘: sig.n U isa
logical union (and/or) of the points defined by the moduli and their s-hlftu-lgs.
The periodicity of the diatonic sieve (scale) is external to the sieve itself
and is based on the existence of the modulus 12 (the octave). Its internal
symmetry can be studied in the indices I (shiﬁ:ings,. resa_due classes) ?f the
terms 12,. But it would be interesting to give, when it exists, a more hidden
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symmetry derived from the decomposition of the modulus 12 into simp
moduli (symmetries, periodicities), such as 3 and 4, a decomposition wh
would have the advantage of allowing a comparison among different sieve:
order to study the degree of their difference and to be able to-define a not
of distance in this way.

Let us take the elementary sieves 3, and 4,. In taking the points
and/or the points 4, we obtain a series H =(.,0,34,6,8,9,12, 15;
18, 20, 21, 24, 27, 28, ... ) = 3 U 4,, and if C is the zero and u =
semitone, H, becomes ( ... C, D#, E, F#, G#, A, C, D#, E, ...). But if we
the points common to 3, and 4, we obtain the series H,=(..0, 12,94
--) = 3, N 4, where the sign N is the logical intersection (and) of the sets
points defined by these moduli and their respective shiftings. / "

Hence, we observe that the series H, can be defined by the modulus
= 3 * 4 and by the logical expression L = 12, which gives the octaves.
number 12 is the smallest common multiple of 3 and 4, which are coprime,
meaning their largest common denominator is 1.4

Let us imagine now the elementary sieves 2, and 6. Then G, =2,U
-, 0,2,4,6, 8,10, 12, ...) and the common peints in G,=2,N6,= (.0
12, 18, ... ). But here, the series is no longer made into octaves as in
preceding case.

To understand this, let us take another example with elementa i

moduli M1 = 6 and M2 = 15 which have been adjusted to the original. We
then form the pairs 6, = (M1, I1) and 15, = (M2,I2) with I1 = 0 and I2 = |
as indices.

The series of the union (M1, I1) U (M2, I2) = K1 will be KI = { ...,
15, 18, 24, 30, 36, 42, 45, ...} and their common points (the intersection) w
form the series (M1, 11) N (M2, I2) = K2 where K2 = { - 0,30 60 .
period is clearly equal to 30 and the largest common denominator D of 6 ai
15is 3 (which is, by multiplication, the part congruent to M1 and M2) and t
smallest common multiple is M3, equals 30. Now, 6 divided by the largest
common denominator D is C1, equals 2; and 15 divided by the largest
common denominator D is C2, equals 5. Generalizing, the period of
points common to the two moduli M1 and M2 will be the smallest common
multiple M3 of these two moduli. So, (M1, I1) N (M2, 12) = (M3, I3) with I3
= 0,ifI1 =12 = 0and M3 = D * C1 * C2, where C1 = M1/Dand C2 = M2
/D. &

Bt

It will also be noted that the operation of logical union, notated as U;.Oﬁ -f

the two elementary moduli M1 and M2 is cumulative in that it takes into ]
1]
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unt the periodic points of both moduli simultaneously. On the other
accC:i the logical operation of intersection, notated as N, is reductive since we
l;’kr:: :)nly the points common to both moduli.
When we mix the points of several moduli M1, M2, M3, M4, ... :

a) by union, we obtain a sieve which is dense and complex
depending on the elementary moduli;

P1 = (M1,11) UM2,12) U(M3,13) U ...

b) by intersection, we obtain a sieve which is more rarified than that
of the elementary moduli, and there would even be some cases
in which the sieve would be empty of points when it lacks
coincidences;

P2 = (M1, I1) N (M2, 12) N (M3,13) N ...

¢) by simultaneous combinations of the two logical operations, we

obtain sieves which can be very complex;

) L = {M11, 111) N (M12,112) N..} U{M21, 121) N (M22, 122)
N..} U{(..)}

ke k()

-3 (1)

i=11

The intersection of each set of pans between curly brackets should furnislh a
single final pair, if it exists. The final pairs will be combined by their union,
which will provide the desired sieve.

Now let us examine the rigorous formulation of the calculation of the
intersection of the two moduli (M1, I1) and (M2, I2) where the periods M1
and M2 start from some I1 and I2 respectively. First I1 and 12 are reduced by
taking their moduli in relation to M1 and M2, I1 = MOD(I1, MI) and 12 =
MOD(12, M2).2

The first coincidence will eventually appear at a distance:

(1) S=1I1+ A*Ml =12 + o *M2
where A and o are elements of N, and if M1 = D * C1 and M2 = D * C2 with
D equal to the largest common denominator, C1 and C2 being coprime, then
the period M3 of the coincidences will be: M3 = D * C1 * C2. From (1) there
follows:

I1-12=(c*D*C2)-(1*D*Cl)and

(I1-12)/D = (¢* C2) - A * C1).
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Now, since the expression on the right of the equal sign is a wh
number, the expression on the left of the equal sign should also be a wh
number. But, if I1 — 12 is not divisible by D (for some 11, 12), then, there ;
no coincidences and the intersection (M1, I1) (M2, 12) will be empty. If not:
(2) (I1-12)/D=WZENand ¥ =g * C2-1 * Cl, as well as:

Yl tCl =a*(9, .
But following Bachet de Meziriac’s theorem (1624), in order for x and y to
two coprimes, it is necessary and sufficient that there exist two relative wh
numbers, £ and §, such that:
(3) 1+8*x=£E*y or
E'¥x=F"*y+1
where § and § ' come from the recursive equations:
4) MOD(¢ * C2, C1) = 1 and®
(5) MODE ' *C1,C2) = 1
while letting £ and { ’ run through the successive values 0,1,2,3, ... (excep
Cl=1andC2=1).
But since C1 and C2 are coprime, there follows from (2) and (3):
Alo=¢, o/W=¢E A/(-W)=¢'and
o/(-W) = &', and if (M1, I1) N (M2, 12) = (M3, I3), then
(6) 13 = MOD((I2 + £ * (I1 - I2) * C2), M3) or
I3 = MOD((I1 + ' * (12 - I1) * C1), M3)
with M3 = D * C1 * C2.

Example 1: M1 = 60, I1 = 18, M2 = 42,12 =48, D = 6,Cl1 = 10
=7,M3 =6*10*7 = 420, with C1 and C2 coprime.

From (3) and (4) we get: ' = 5.

From (6) we get: I3 = MOD(18 + 5 * (48 - 18) * 10, 420) = 258,

Example 2: M1 = 6, I1 =3,M2=812=3D=2Cl = 3,C2=4M
= 24, with C1 and C2 coprime.

From (4) we get: § = 1. B

And from (6) we get: I3 = MOD((3 + 1 * (3 - 3) * 4), 24) = 3; that is, in
the case that I1 = 12, then I3 = 11 = 12, and here M3 = 24 and I3 = 3, .

Take the preceding example but with I1 = I3 and I2 = 4, so I1 is not
equal to I2. Since I1 / D = 1.5, which is not an element of N, there are
coincidences and M3 = 0 and I3 = 0. But, if I1 = 2and I2 = 16, and since (I1
-12) /D =7 X N, we obtain from (4) £ = 1 and from (6)I3 =MODO + 1*(2
- 0) * 4, 24) = 8 and (M3, I3) = (24, 8). i
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Computation of the Intersection (M1,I1)n (M2,I12) = (M3,I3)
Are given: M1, M2, 11, 12, with Ii = MOD(li, Mi) > 0
D = the largest common denominator of M1 and M2

M3 = the smallest common multiple of M1 and M2
Cl =M1/D,C2=M2/D,M3 =D *Cl *C2

NO Coin CIDENCES
M3, 10 e—(cr )

A B (4311121 C2),m3)| |13 Eron(ng il (), M3) |

Figure 1.
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To compute several simultaneous intersections (coincidences) from ap
expression between brackets in the equation (0) of L, it suffices to calculate
the pairs in that expression two by two. For example: ' :

kO=4 k()

L= 3 (I1)

i=]

={3,2n4,7n 6,11)N 8, 7)}U{(6,9) n(15,18)} y .'

{(18,5) N (8,6) N 4,2} U {6,9 n (15, 19)}, with ko = 4.

For the first expression between brackets, we first do 3.2N@4 7= (12,

11), then, after modular reduction of the indices, (12, 11) N 6, 5) = (12, 1)

then (12, 11) N (8,7) = (24, 23). We go on to the following brackets,

and 5o on,
Finally,

L =(24,23)U (30,3)U (104, 70)U (0, 0) for ko = 4, k(1)
=4,k(2) =2,k(3) =3, k@4) = 9.

Through a convenient scanning, this logical expression will provide us with
the points of a sieve constructed in the following fashion: '

H=1..5 23, 33, 47, 63,90, 71. 93,95, 119, 123, 143, 155;
167, ... 479, ..J}
with a period of P
can be arbitrarily taken
16384 Hz) with u equal
#D;, #As, B,, etc. :
For the same zero taken to be C, and for u to be equal to a quartertone,
the series gives us the notes # Cs, +B,, +E,, +B; +G,, B,, # A, +B,,
+B,, # C,, etc.

8

= 1560. The zero of this sieve within the set of pitches |
to be ¢-2 = 895 115 and at ten octaves, (210 * g o5 —

Inverse case

Let us start from a series of
intuitively and deduce its symmetries;
shiftings (Mj, 1j), and construct the logic
of points. The steps to follow are:

points ecither given or constructed
that is to say, the moduli and their
al expression L, describing this series

a) each point is considered as a point of departure ( = In) ofa
modulus.

b) to find the modulus corresponding to this point of departure, we
begin by applying a modulus of value Q = 2 unities. If each
one of its multiples meets a point which has not already been
encountered and which belongs to the given sieve, then we
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keep the modulus and it forms the pair (Mn, In). But ifan)t one
of its multiples happens not to correspond to one of the points
of the series, we abandon it and pass on to Q + 1. We proceed
so until each one of the points in the given series has been
taken into account.

¢) if for a given Q, we garner all its points (Q, Il'n) under another pair
(M, I); that is, if the set (Q, Ik) is inc]udtfd in (h'd, 1), then, we
ignore (Q, Ik) and pass on to the following point I, ,.

d) similarly, we ignore all the (Q, I) which, wl.lilc proc_lucing some of
the not-yet-encountered points of the given series, als_o
produce, upstream of the index I, some parasitical points other
than those of the given series. :

An example: from the preceding series H, we will select on.ly the pomrs
between 3 and 167 inclusive. Then, we could construct the following union:
L = (73,70) U (30, 3) U (24, 23), X
with P = 8760 as its period. However, if the same series H
were limited between the points 3 and 479 inclusive, (this time
having 40 points), it would be generated by:
L = (30, 3) U (24, 23) U (104, 70),
the modulus 30 covering 16 points, the modulus 24 .co_verirfg 20 points,'and
the modulus 104 covering 4 points. The function L is identical to that given
ier. Its period is 1560. :
earheln geira], to find the period of a series of points c.leriv.edlfrt'm'l a loglc:;l
expression whose definitive form is the uni?n _of moduli (Mj, Ij), it is l;t::nr_)ug
to compose the intersection of the moduli within the parentheses two by tw:.
For example: M1 = 12, M2 =6, M3 = 8; M1 N M2 = D *C1 *_C? =_6 2
*1=12=M;MN M3=D*Cl1*C2=4*3*2= 24.AndthepenodP'— 2‘_}.
In general, one should take into accout?t as many points as possible in
order to secure a more precise logical expression L.

Metabolae of Sieves
Metabolae (transformations) of sieves can come about in various ways:
a) by a change of the indices of the moduli-. Fc3r example:: L =(54)
U (3,2) U (7, 3) of period P = 105 will give the series:
H=1{..,23,4,5,80910,11, 14, 17, 19, 20, 23, 24, 26, 29,
31, ...}. But if a whole number n is added to the indices, the
expression L becomes for n = 7:
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L'=(511)U(s, 9) U(7, 10) and after modular reduction ¢
the indices:
L'=¢6,1)u@E o0u (7, 3), of the same period P = 105,
The series H' = it 0% 08 3,6,9,10,11, 12, 15,16, 17, 18, 21, 24, 26,
30, ...} derived from this last expression L', having the same intervallic structy
as the H series and differing from it only by its initial point, which is given by

of H. Indeed, if in the series H, the intervals start from 2, which is the index
the smallest modulus of M, then the same intervals are to be found starting from
2 + 7 = 9 within the series H'. This case is what musicians call “trans

changes while its period is maintained. For example: add 8, 1, and -6 respective
to the three indices of L, which becomes after their modular reductions:

He{..023486"% 9,11,12,15, 17, 18, 21, 22, 24, 25,
27,850,892, ).
b) by transformations of the logical operations in some manner,
using the laws of logic and mathematics, or arbitrarily.

anthem, which is based on the diatonic scale (white keys), while
transforming the semitones into quartertones or into
eighthtones, etc. If this metabola js used rarely melodically or
harmonically, it does however occur in other characteristics of

sound such as time by changes in tempo, and this, as far as
history can remember.

Conclusion

given by observation, or invented completely from moduli of repetition.

In what has been demonstrated above, the examples have been taken
from instrumental music. But it is quite conceivable to apply this theory to

computer generated sound synthesis, imagining that the amplitude and/or

the time of the sound signal can be ruled by sieves. The subtle symimetries
thus created should open a new field for exploration.

smallest index of the expression L' and by a shifting n of the intervallic sl:ructu

L = (5,2) U(3,0) U(7, 4) of period P = 105, and which gives:

i
¢) by the modification of its unity u. For example, sin g the national =

points either constructed intuitively,

Chapter XII

Sieves: a User’s Guide

I would like to give credit and express my thanks to Gérard Marino, a
programmer who works with me at CEMAMu. He has adapted my own pro-
gram which I originally wrote in “Basic” into “C.”

The program is divided into two parts:

A. Generation of points on a straight line from the logical formula of
the sieve.

B. Generation of the logical formula of the sieve from a series of points
on a straight line.

A. GENERATION OF POINTS ON A STRAIGHT LINE
FROM THE LOGICAL FORMULA OF THE SIEVE

Example:

DEFINITION OF A SIEVE:
e 10020
+ 100" .. .2 0)
+

+ 0*0*...*0 : ‘
In each parenthesis are given in order: modulus, starting point
(taken from the set of integers)
[l +[]is a union
() * () is an intersection

Given the formula of a sieve made out of unions and intersections of
moduli, the program reduces the number of intersectior'as to one and
keeps only the given unions. The abscissa U.f the final points of the
sieve are computed from these unions and displayed.

NUMBER OF UNIONS ? = 2

modulus 1 ?
start ?
modulus 2 ?
start ?
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union 1: number of modules ? = 2

=9 =00
~1 o W
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union 2: number of modules ? = 2 modulus1? =6
start ? =9
modulus2? =15
start ? =18
FORMULA OF THE SIEVE:
L= [[3 2)*(4:7)]
+ 1.6, 9 *(15,18)]
REDUCTION OF THE INTERSECTIONS:
union 1
[3,2)*(4,7))]=(12,11)
decompression into prime modules ?
(press °y’ for yes, any other key for no): y
(12,11) = 4.3) * (3.2)
union 2
[ (6,9) * (15,18) ) ] = (30,3)
decompression into prime modules ?
(press 'y’ for yes, any other key for no): y
(30’2) b 2;1) " (3!0) 5 (513)
SIMPLIFIED FORMULA OF THE SIEVE:
L =1L(12, 11)+( 30, 3)
POINTS OF THE SIEVE CALCULATED WITH THIS FOPRMULA:
rank of first displayed point ? = 0
press <enter> to get a series of 10 points
Rank
0 | 11 23 33 35 47 59 63 71 83
10 93 95 107 119 123 131 143 153 155 167
20 179 183 191 203 213 215 227 939 943 “OEf
30 263 9273 . 2957 28F 1 9097308 ' 311 393 . 333 . 335
40 347 359 363 371 385 393 395 407 419 423
50 431 443 453 455 467 479 483 491 503 513
60 518, By L3N | 543 551 563 75 K  BAT7 BAY
70 603 611 623 633 635 647 659 663 671 683
80 693 i Lo SR 1 RS (- G £ 1 | 743 753 756 767
20 SN i ! G- TR L 80% 813 815 897 839 | 843 851
100 863 873 875 887 899 903 911 923 933 935
110 947 959 963 971 983 993 995 1007 1019 1023
120 1031 1043 1053 1055 1067 1079 1083 1091 1103 1113
130 1115 1127 1139 1143 1151 11638 1173 1175 1187 ' 11449

Sieves: A User’s Guide
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Line# Source Line

#include <stdiuo.h >
#include <stdlib.h>
#include <coniuo.h>

J* types definitions ':.4;
typedef struct /* period ( congruence class )
short mod; /* modulus of the period :,-‘
short ini; /* starting point /
t;pgggog.ﬁ.:ct /* intersection of several periods */
: ) L "
Inb; /* number of terms in t.l:xe intersection

Sl‘;?;‘;d: :"cl; [* terms in the intersection :,"
geriodc clr; /* resulting p'eriod *:
unsigned long ptval; /* current point value

} inter; ! 5
i function proto?ypesfth : i o

ijode Reduclnter(short u); /* computation of the intersections

‘ls:’lfg't Euclide(short m1,short m2); /* computation o'f the I:CD :f'
short Meziriac(short cl,short c2); I* comp}ttat}on of 'dze:t.a i
void Decompos(periode pr)¥ decomposition into prime factors

[* variables :}
inter *fCrib; [* sieve formula ; *,-‘
short unb = 0; /* number of unions in the formula /
short u0,ul,u=0; /* current union inldex_ :J’
short 1i=0; /* current intersection index |
unsigned long lastval,n0,ptnb = 0; 3

perigde CL_EMPTY = {0, 0 }/* empty period */

#define NONEMPTY 1

short flag = 0;

short decomp =0;

vo;d-main (void)

{ 3 "
print_t'("SIEVES: user’s guide\n\n

"A. GENERATION OF POINTS ON A STRAIGHT LINE FROM\n"

" THE LOGICAL FORMULA OF THE SIEVE\n\n"
"Example:\n”
L] '\I]“

"DEFINITION OF A SIEVE:n"
" L=[0*0*..* 0\

" +10* 0% 0hn

¥ e

" +[0*0* . * On’

: s . : "
"In each parenthesis are given In order: modulus, starting point\n

"(taken from the set of integers)\n"
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Line# Source Line Z
52 "(] + []is a union\n" Line# Source Line
53 . "()* () isan intersection\n\n"); 104 if(i%4==0)
54 printf{(" An" 105 printf("\n ")
gg :.Gi\rcn the formula of a sieve made out of unions and\n‘; 106 I;nnt_f("m 1
intersections of moduli, the program red th " 107 . : : ik Ly
57 "intersections to one and ker:gs ognly thi- g;i:;ez u:i:#;_];lbner ofs i 108 printf("(%5d,%5d) " fCrib[u].cl[i].mod, fCrib[u].cl[i].ini);
gs :'I'l'len, the abscissa of the final points of the sieve are\n" e 109 }. el
Bg s computed from these unions and displayed.\n\n"); i 11(1) I;rmtf( Tn");
________________ -- pet tl‘l f * i fil il -
61 AersTp Ao g e formula of the sieve */ i 112 printf(" \n");
62 { i 113 printf’REDUCTION OF THE INTERSECTIONS:\n\n");
63 printf’lNUMBER OF UNIONS ? = " Al 114 for (u = 0; u unb; u++)
64 scanf("%d",&unb); i I 115 {
65 } il 116 printf("union %d\n [ at+l)
66 fCrib = (inter *)(malloc (sizeof(inter) * : i 117 for (i = 0;i fCrib[u].clnb; i++)
67  if (fCrib == NULL) R Yaunh), 118 { _ Wil
b { 119 printf('(%d,%d) *, fCribful.clfil.mod, fCribful.clfilini);
69 intf(" m. i 120 if (i = fCrib[u].clnb - 1)
printf{"not enough memor o !
70 exit(1); s iy i 121 printf("™ ");
71 } i 122 } { ; A
72 printf(" \n'"); /o 123 fCrib[u].clr = Reduclnter(u); /* reduction of an intersection g |
73 for (u = 0; u unb; u++) i i 124 printf("] = (%d,%d)\n\n", fCrib[u].clr.mod, fCrib[u].clr.ini);
74 { : 125 printf("  decomposition into prime modules ?\n"
75 intf("uni ; i 126 i (press 'y’ for yes, any other key for no): ");
printf("union %d: number of modules ? = " z ] P M Y
76 scanf("%d",&fCrib[u].clnb); it FRE Ly i 127 if (getche() =="y))
;; vl E 1 : (%d,%d)", fCrib[u].clr.mod, fCrib[u].clr.ini)
fCrib[u].cl = (periode * 1 : . . 129 printf("\n\n %d,%d)", fCrib[u].clr.mod, fCrib[u].clr.ini);
29 if (RCriblul.cl (E= NI?LIigm loc (sizeof(periode) * fCrib[u].clnb)); . 130 Decompos(fCrib{u].clr);
80 { Vi 131
81 intf(" " A 182 clse
printf("not enough ’ i
89 exit(1); gh memory\n"); v 133 prin tf("\n\n");
83 } ﬁ"' 134 }
84 for (i = 0;i fCrib e e 135 printf(" \n");
85 { ( 1 fCrib[u].clnb; i++) g/ 136 o P b display the simplified formula -------s-oroeemmeeeeees %
86  printf(\n modulus %d ? = % § + 1); i 137  printf’SIMPLIFIED FORMULA OF THE SIEVE:n\n");
87 scanf("%d",&fCrib[u].cl[i].mod); ¥ g i) 138 printf" L=")
88 printf(" start ? =’-). 139 for (u = 0; u unb; u++)
89 scanf("%d", &fCrib[ul.clfilini): 140 {
90 } A 141 if (u 1= 0)
91 intf(" " 142 {
printf{ ;
92 } i 143 if (u%4 ==0)
93 /* weeeeeeeee. reduction of the formul B 144 printf("\n "
g; print"FORMULA OF THE SIEVE \n\a" i i }45 r}arintf("+ %
P L=y i 46 ! 4
96 for (u = 0; u [un)b; u++) 147 printf('{%Sd,%Bd) " fCrib[u].clr.mod, {Crib[u].clr.ini);
97 { k! 148 }
98 if (ul=0) A 149 printf("\n -n"); )
99 printtt 4| & 150  /® ceceemmemenemeneeen points of the sieve /
100 for (i = 0;i fCrib[u].clnb; i+ +) g 151 printf"POINTS OF THE SIEVE CALCULATED WITH THIS
i { ; § FORMULAAR"); .
102 if (i!=0) il 152 printf("rank of first displayed point ="
103 { . 153  scanf(*%lu",&n0);

154 n0 = n0 -n0 % 10;
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Line# Source Line

155
156
15 ¢
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

205
206

printf("\npress <enter> to get a series of 10 points\n\n"
"Rank |");
for (u =0; u unb; u++)
if {(fCrib[u].‘clr.mod I=0 || fCrib[u].clr.ini | = 0)

fCrib{u].ptval = fCrib[u].clr.ini;
;lag = NONEMPTY;

else
. fCrib [u].ptval = OxFFFFFFF F;

if (flag 1= NONEMPTY)
return;
ul =yl = 0;
lastval = OxFFFFF FFF;
while (1)
{
fo{r (= (u0 + 1) % unb; u 1= ul; u = (u + 1) % unb)

if {fCrib[u].ptvaI fCrib[ul].ptva!}
u

§ il
if{(fCrib[ul].ptval = lastval) /* new point */

!astval — ﬁ:‘rib[ul].ptval;
1f{(ptnb = n0)

if (ptnb % 10 == 0)
{

getch();  /* geta character from the keyboard */
%)rlntf("\n%'?lu |", ptnb);

}}Jrintﬂ"%ﬁlu . ICrib[ul],ptval);
ptnb++;

fCrib[ul].ptvaI += fCrib[ul].clr.mod;
ul = ul;

[* === m==== reduction of an intersection ======== *
?eriode Reduclnter(short u) o i

periode cl,cll ,c12,c18;
short pged,T)n;
long  cl,c9;

cld = fCrib[u].cl[0];
for{{n = 1; n fCrib[u].clnb; n+ +)

cll = cl3;

gieves: A User’s Guide
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Line# Source Line

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

cl2 = fCrib[u].cl[n];
if (cll.mod cl2.mod)

d =dl;
cll =cl2:
cl2 =dl;
}
if (cll.mod != 0 && cl2.mod != 0)
{

cll.ini %= cll.mod;
cl2.ini %= ¢l2.mod;
}
else
return CL_EMPTY;
/* module resulting from the intersection of 2 modules */
pged = Euclide(cll.mod, c12.mod);
cl  =cll.mod/ pged;
c2 = cl2.mod/ pged;
if (pged 1= 1
&& ( (cll.ini - cl2.ini) % pged 1= 0))
return CL._EMPTY;
if (pged 1= 1
&8 ((cll.ini - cl2.ini) % pged == 0)
&& (cll.ini != cl2.ini) && (cl1 == c2))

{

cl3.mod = pged;
cl3.ini = cll.ini;
continue;

}

T = Meziriac((short) cl, (short) c2);
cl3.mod = (short) (c1 * c2 * pged);
cl3.ini = (short) (( cll.ini
+ T * (cl2.ini - cll.ini) * c1) % cl3.mod);
while (cl3.ini cll.ini || cl3.ini cl2.ini)
cl3.ini += cl3.mod;
}

return cl3;

s === decomposition into an intersection ======== ¥/
r* of prime modules */

void Decompos (periode pr)

{

periode pf;
short fet;

if (pr.mod == 0)
{
printf(" = (%d,%d)\n", pr.mod, pr.ini);

return;

}

printf(" =");
for (i = 0, fct = 2; pr.mod != 1; fet++)
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259 {
260 pfmod = 1;
261 while (pr.mod % fet == 0 && fe=
i ; P Vad promod != 1)
263 pfmod *= fet;
264 pramod /= fet;
265 }
266 if (pfmod |= 1)
267 {
268 pfini = pr.ini % pf.mod;
269 Ppr.ini %= pr.moc?;
270 if(il=0)
g;’l printf{" *");
2 rintf{" (%d,%d)", pf. ini);
51t F+ +;r_f[ ( ed)", pfmod, pfini);
274 }
275 }
276 printf("\n");
2070
978 /* Bt Euclide’s a]gorithm-::::::_—.: *f

279 short Euclide (al,a2) /*al =a9 0%
280 shortal;
281 shorta9;

282 {
283 short tmp;

284

285 while ((tmp = I=

i : ((tmp = al % a2) ! 0)

287 al = a2;

288 a2 = tmp;

289 }

290 return a2;

291

2020 e De Meziriac’s theorem mEs======

293 short Meziriac (cl,c2) f*cl=c9 g%
294  short cl; ) j i g
295  short c2;

{

296

297 short T = 0;

298

299 if(c2 ==1)

300 T= 3 G

301 else

302 while (((+ * {e
808 : (++T*cl) % c2) 1= 1)
304 return T;

305 }

sieves: A User’s Guide
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B. GENERATION OF THE LOGICAL FORMULA OF
THE SIEVE FROM A SERIES OF POINTS ON A

STRAIGHT LINE

Example:

Given a series of points, find the starting points with their moduli

(periods).
NUMBER OF POINTS ? = 12

abscissa of the points

point 1 = 59 point 2 = 93 point 3 = 47 point4 = 3
point 5 = 63 point 6 = 11 point 7 = 23 point 8 = 33
point 9 = 95 point 10 = 71 point 11 = 35 point 12 = 83

POINTS OF THE SIEVE (ordered by their increasing abscissa):
Rank 0 3 11 23 33 35 47 59 63 71 83
10 93 95

FORMULA OF THE SIEVE:

In each parenthesis are given in order:

(modulus, starting point, number of covered points)
L=(30,3, 4}+(12, 11, 8)
period of the sieve: P = 60

Line# Source Line

1 #include <stdio.h>

2  #include <stdlib.h>

3 #include <string.h>

4  #include <string.h>

5

6 % types definitions

; typedef struct /* period ( congruence class )
9 short mod; /* modulus of the period
10 short ini; [* starting point
11 short couv; /* number of covered points
12} periode;
- function prototypes
14 unsigned long Euclide(unsigned long m1,

5 unsigned long m2); /* computation of the LCD
16 .= variables and constants

/* periods of the sieve

/* number of periods in the formula
/* points of the crible

/* points outside the periods

/* number of points in the sieve

17 periode*perCrib;

18  short perTotNb = 0;
19 long *ptCrib;

20  long *ptReste;

21 short ptTotNb = 0;
22  short p,ptnb;

23 long ptval;

24 unsigned long percrib;

il
e/

*/
#
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26 Pperiodeper;
27
28  #define N ON_REDUN DANT o
29  #define REDUNDANT il

30 #define COVERED -1L
31  short flag;

32
33 /* =========================_—.========= byl 4
34  void main(void)
3h 0 f
36 printf("B. GENERATION OF THE LOGICAL FORMULA OF THE
SIEVE FROM\n"
37 " A SERIES OF POINTS ON A STRAIGHT LINE\n\n"
38 "Example:\n"
39 L LJ
40 "Given a series of points, find the starting points\n"
41 "with their modulj (periods).\n\n");
42 entry of the points of the sieve and their sorting ----... =4
43 while (ptTotNb = = 0)
44 { !
45 printf "NUMBER OF POINTS ? = 4 q
46 scanf("%d",&ptToLNb);
47 }

48 ptCrib = (long *)(malloc (ptTotNb * sizeof{long)));

49 ptReste = (long *)(malloc (ptTotNb * sizeaf(long}));
50 perCrib = (periode *)(malloc (ptTotNb * sizeof(periode})};
51 if (ptCrib == NULL || ptReste == NULL, || perCrib == NULL)
52 {
53 Printf{("not enough memory\n");
54 exit(1);
55 }
56 printf(" - \n"
57 "abscissa of the points:\n");
58 for (p=0; P ptTotNb; p++)
59 {
60 if (p % 4 == 0)
61 printf("\n "),
62 printf{"point %2d =", P+ 1)
63 scanf("%I]d", &ptval);
64 for (ptnb = o,
65 ptnb p && ptval PtCrib[ptnb];
66 ptnb++)
67 3
68 if (ptnb p)
69 {
70 if (ptval PtCrib[ptnb]) /* new point b/
71

memmove(&pt(]rib{pmb +: 17, &ptCrib[ptnb],
72 sizeof(long) * (p - ptnb));
else /* point already exist %

P |
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me# Source Line
bm?ﬁ ptTotNb-;
77 ¥
78 3o LALLG
79 ptCrib[ptnb] = ptval;
80 y s i
o i -- points of the sieve = ;
“ 4 TEEESIIT}EOF%E SIEVE (ordered by their increasing
3 rin I
; Ebscissa) An\n' | )
"Rank |");
gg for (p = 0; p ptTotNb; p++)
6 {
37 if (p % 10 ==0)“
88 printf("n%7d |", p) 5
89 printf("%61d ", ptCrib[p]);
5t i o SRR | !
- sztf(“\n\l:l---—- compute the periods of the sieve i asen f
gg I’J;IC-I’;I—C-I;-Y-EI-)IZRCSTB, ptCrib, ptTotNb * sizeof(long));
g; for (p = 0; p ptTotNb; p++)
{
g? if ( ptReste[p] == COVERED ) )
i /:onunu?ompute a period starting at current point --------- /
99
100 per.mod = 0;
101 do
o { od++; '
igi IF::Z;::u = {sl;ort) (ptCrib[p] % (long)per.mod);
— 0'
105 per.couv =0 jLdaa,
103 i (Ph;lzn;) [;;tth;:N b 31:& ptval = ptCrib[ptnb];
igﬂ ptnb++)
i?g if (ptval == ptCrib[ptnb])
111 { ol
152 per.couv s o
113 ptval += per.mod;
114
115 }
e i‘l'le (ptnb ptTotNb); deoastinc | b
e ;': :----E--- check the redundancy of the pe{?NDANT-
Hg for (ptnb = 0, ptval = per.ini, flag = RED ¢
120 ptnb ptTotNb;
121 ptnb++)
{ -
igg if (ptval == ptCrib[ptnb])
124 {
125

126

if (ptval == ptReste[ptnb])
{
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Line# Source Line
127 ptReste[ptnb] = COVERED; Chapter XIlI
}‘E’g ?ag = NON_REDUNDANT;
130 tval += per.mod;
131 5 N
132 } . . .
185 if flag = NON REBUNDAND Dynamic Stochastic Synthesis
ig; }perCrib[pchotN b++] = per;
136 /¥ seesseneceneeees compute the period of the Sieve —eeemeeemeemeen. % What is the most economical way to create a plane wave in an amplitude-
137 percrib = perCrib[0].mod; time space (atmospheric pressure-time), encompassing all possible forms
:gg for {{P = 1;p perTotNb; p++) from a square wave to white noise? From an informatics point of view, a
140 if ((long) perCrib[p].mod = percrib) square wave is quite simple with only two amplitudes, = a over n of fixed
141 percrib *= (long) perCrib[p].mod / Euclide((long)perCrib{p].mod, i, samplings. White noise is also quite simple and generated by a compound of
s elPer‘-'rlb}; i stochastic functions whose samplings are dovetailed, nested, or not.
s

143 pererib *= (long) perCrib[p].mod / Euclid e(percrib But what about waves representing melodies, symphonies, natural
fiow glﬂng)perCrib[p].mod); j sounds ...7
145 Ml s TN S S 4 The fol:undaﬁon of th.eir' .nature and therefore of their human
146 printf"FORMULA OF THE SIEVE:\n"- intelligibility is temporal periodicity and the symmetry of the curves. The
%i; :Iﬂsgch parenthesis are given in order:\n" brain can marvelously detect, with a fantastic precision, melodies, timbres,

(modulus, starting point, number of covered points)\n\n"); dynamics, polyphonies, as well as their complex transformations in the form

149 primf(" L= ");

150 for{(p =0; p perTotNb; p++) of a curve, unlike the eye which has difficulty perceiving a curve with such a

fast mobility.

151
152 if (p != ; i ) AL I ey ;
153 i {(p o An attempt at musical synthesis according to this orientation is to begin
154 if(p%3 ==0) from a probabilistic wave form (random walk or Brownian movement)
igg printfn ") constructed from varied distributions in the two dimensions, amplitude and
157 ;mntf( *i time (a, t), all while injecting periodicities in t and symmetries in a. If the
158 printf{_"{%Ed,% 5d,%5d) ", perCrib[p].mod,perCrib[p].ini, symmel_:ries and peri-()diciti.cs are weak or infrequent, we will obtain
- }}aerCnb[p].couv); 3 something close to white noise. On the other hand, the more numerous and
! g i i d periodicities are, the closer the resultin,

160 o ! A ! : ! complex (rich) the symmetries and p 5 g
161y printf("n\n  period of the sieve: P = %lu\n", percrib); music will resemble a simple held note. Following these principles, the whole
122 /* == ========= Fuclide'salgorithm ==========c=< % 1 gamut of music past and to come can be approached. Furthermore, the
: 62 L’:::g::g iong El‘mhdf-‘ (al,a2) /*al =a2 0 + relationship between the macroscopic or microscopic levels of these injections

ong al;
165 unsigned long a2; ; 4! plays a fundamental role.
166 { 3 Below, is a first approach to constructing such a wave.
igg unsigned long tmp; i

-
169 while ((tmp = al % a2) 1= 0) 5 Procedure
};? - i g Al. Following the absciss of t, we begin with a length (period) T where
172 . ;2a=’tmp_ T = 1/f seconds and f is a freely chosen frequency. At the start, this period T
173 } i ; is subdivided into n equal segments; for example, n = 12 (this is one
174 return a2; '
E 289

175 ¥
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macroscopic level). Every time T is repeated, each segment t-t, of(i=0,1,
2, 3, ..,n-1) undergoes a stochastic alteration which increases or reduces
within certain limits imposed, for example, by elastic barriers. ;
BI1. Following the amplitude axis, a value is given to each extremity of
the 12 preceding segments. These values form a polygon inscribed op
enveloping a sine wave, or a rectangular form, or a form born of a stochas He
function such as that of Cauchy, or even a polygon flattened at the zero leve]
The E; ordinates of these n summits undergo a stochastic alteration at ea

repetition which is sufficiently weak and even more, compressed between
adequate elastic barriers,

Cl. The E ordinates of the samplings found between the ;
extremities of a segment T will be calculated by a linear interpolation of th
ordinates E; 1 and E; of these extremities,

A2. Abscissa of the P°1Y§on’s . its

Figure 1.

6 prec(eding) = -t ; 6 pres(ent) = -1,

4 i g
Dyﬂamif-' Stochastic Synthesis 29

Procedures

Construction of 6 present from “logistic” distribution:

@ P
ke 2 1+ e %P2

and its distribution function,
1
s 'f U®% = T3 ExP=at=p)

we obtain {= — (S + ln(l—;1 )) /a with y coming from the

uniform distribution:
O=sy=1.

2
b take: § pres = { prec + §

i Pass this £ pres into local elastic barriers

#+ 100 taken from /2, to obtain §':
4
Then do:
6 pres = 6 prec + {"*Rdct
where Rdct is a reduction factor.

Q)

Finally pass 6 pres into general elastic barriers 6,;, and 6 ;.

obtained as follows:

a) the minimum frequency is, say 3 HZ. Then :I;]e maximum
iod i ts will have a mean
periodis T = g sec and each of the 12 segments wi

1
length of 6, = B 13 5

SAMP
b) The maximum frequency could be o HZ where

SAMP is the sampling rate, say 44100 HZ. Therefore c.?lch of the
12 segments could have a minimum length of the period

T il
19 = SAMP ~ Imin.
6)

Repeat the above procedures for each of the n = 12 segments.




292 Formalized Mus

B2. Ordinates of the Polygon’s summits

£
Q
£ (-7 :
o
_‘-i_ 1%
(=7 /
Figure 2.

The i present ordinate is obtained from the jth preceding ordinate j

following manner:
Construction of the Ej pres:

(1) Take a probability distribution W(g); then its distribution

function Q(W) = 0 f W (o)do. We obtain o = V(Q, y)w

0 =y =1 (the uniform distribution) and W(o) any distribu
(2) Pass o through local barriers (+ 0.2)

(3) Add this o to the E; prec.
E

i pres = Fiprec + ¢

(4) Pass Ej e through limitative barriers + 8 bits (+ 32768) an

this is the final E; pres.

(5) Do this for each of the 10 summits within the two boundary e

summits of the polygon. o

(6) The last boundary summit will be taken as the first boundar_j;-‘

summit of the next period.

C2. Construct the E; ordinate of the sampling point t which can be fo nd

the segment t; - tj., between the ordinates Ej. | and E; through a linear i
polation.

Dynamic Stochastic Synthesis 293
_ (Bi- Ei—1)(t— ti—1)
i G- 61

Therefore, a microscopic construction.

General comment: the distribution functions U®) and W(o) can be
either simple, for example, sine, Cauchy, logistic, ...; or more complex,
through nesting, etc. ] . j

The data given above is naturally an arbitrary starting point which I
used in La Légende d’Eer. . :

This approach to sound synthesis represents a non-linear dynam}c
stochastic evolution which bypasses the habitual analyses and harmonic
syntheses of Fourier since it is applied to the f(t) part on the left of the equal
sign of Fourier’s transformation. This approach can be compared to current
research on dynamic systems, deterministic chaoses or fractals. Therefore, we
can say that it bears the seed of future exploration.




Chapter XIV

More Thorough Stochastic Music

Introduction

This chapter deals with a generalisation of sound synthesis by using not
periodic functions, but quite the opposite, non-recurring, non-linear
functions. The sound space in question is one which will produce a likeness
of live sounds or music, unpredictable in the short or long run, but, for
example, being able to vary their timbre from pure “sine - wave” sound to
noise.

Indeed, the challenge is to create music, starting, in so far as it is
possible, from a minimum number of premises but which would be
“interesting” from a contemporary aesthetical sensitivity, without
borrowing or getting trapped in known paths.

The ontological ideas behind this subject have already been exposed
in the chapters treating ACHORRIPSIS (cf. chapters I and V) some 33
years ago, and still form the background canvas to this new, somewhat
more thorough scope, which should result in more radical experimental
solutions.

If, at that time, the “waves” in the “black universe” were still produced
by musical instruments and human beings, today, these “waves” would be
produced mainly by probability distributions (adorned with some
restrictions) and by computers.

Therefore, we find ourselves in front of an attempt, as objective as
possible, of creating an automated art, without any human interference
except at the start, only in order to give the initial impulse and a few
premises, like in the case of the Demiourgos in Plato’s Politicos, or of
Yahweh in the Old Testament, or even of Nothingness in the Big Bang
Theory.

295
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Microstructure

The fundamental ingredients used are (almost like in the case of !

Légende d’Eer) four in numbér -

a) A temporal ficticious length divided into a given number
segments, at whose ends we draw amplitudes in order to form a stoc
polygonal wave-form (PWF);

b) As a matter of fact, this polygone is built contin uously and endles
through the help of probability distributions by cumulatively varyj

temporal lengths as well as the amplitudes of the vertices 4

¢) In order to avoid excessive cumulated values, elastic barriers
imposed;

d) A linear interpolation joins the vertices,

Under certain conditions, this procedure, although chaotic ar

undeterministic, produces a relatively stable sound.

The computation of the stochastic polygonal waveforms uses o
stochastic law that governs the amplitudes and another one that gover;

the durations of the time-segmcnts. The user chooses among several
tinct stochastic laws (Bernouilli, Cauchy, Poisson, Exponential. . . ).

sizes of the elastic-mirrors that are applied to the amplitudes and the dur

tions can be chosen too.

Macrostructure

A) The preceeding procedure therefore produces a sound of a ce
duration;
B) A sequence (PARAG(psi%)) results from a simultaneous and temp
multiplicity of such sounds. This sequence is equally constructed thro
decisions governed by probability distributions;

C) An arbitrary chain of such sequences could produce an interesti
musical composition.

DATA
of the sequence
PARAG (psi%)

The end-figures of the dyn%-routes are given by dynMIN% < dynMAX‘ﬁi
k0

(here, up to 16 arbitrary routes)
For each dyn%-route are defined :

1) The number Imax% of segments for the polygonal wave-form (PWF),
2) The number of sound fields per dyn%-route,

E

!__;

J.
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9) The coefficient of the exponenti‘al distribution which stochastically
governs the sound or silence fields of this dyn%-route,

4) The probability (Bernoulli distribution) by which a field becomes a
sound field,

5) Various digital filters,

6) Two stochastic laws that govern the amplitudes (ordinates) and the
intervals (durations) of the vertices of the successive polygonal wave-forms,
(at least six distinct stochastic laws are introduced),
7) If needed, two numerical coefficients for each of the previous stochastic
laws, -
8) a) The sizes of the first two elastic-mirrors that are used for the amplitudes
(ordinates), |

b) The sizes of the first two elastic-mirrors that are used for the abscissa

dme X . .
( )c) The sizes of the second two elastic-mirrors that are used for the
amplitudes (ordinates), A

j d) The sizes of the second two elastic-mirrors that are used for the

abscissa (time), ! |

9) Proportional corrections of the mirror-sizes in order to avoid an
overflow (> 16 bits ) per sample, |
10) For all the dyn%-routes of this PARAG(psi%) sequence, a stoc.hastxc
computation (through exponential distribution) of t_he sou-nd or sslen(ze
fields is carried out, determining namely their starting points and their
durations.
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TABLE aof arbitrary succession of PARAG(psi%) - sequences
with : ysp% = ordinal number of the sequence ;
psi% = specific number of a sequence.

[ pi% = QuspMin%e +j%) |

CONSTRUCTION of a PARAG(psi%) sound-sequence thanks

to a simul and

with the contribution of several given dyn%-routes,

iplicity made up

More Thorough Stochastic Music

299

+b
- STl o513 " .
=dynMin% dyn% = dynMin%+1 = : % =Mt dyn% =dynMax%
SR CONTRIBUTION of the dyn%-route by means of the dyn% =dynMax%.2 ok DYNA:’{"‘“%J
DYNAS{dyn%) sub-routine D¥NAS(dyn%), that is, stochastic construction of DYNAS(dyn%) DYNAS(dyn%) dyn
successive polygonal wave-forms (PWF)
l ! I . ﬁlﬁ
+ g
AMPLITUDE (ordinate) ABSCISSA (time)
of a present vertex, of a present vertex
1. Choose, according to 1. Choose, according to i
PARAG(psi%) the stochastic P{&R?\G(Fsl%} the stochastic
distribution f{y). distribution g(x)

2. From the uniform distrib, we
draw 0= Z1 < 1. Then from the
distrib. functiosl

Fiy) =f;TyMy =71

we draw Yo an amplitude (ordi-
nate) increase of this vertex.

4. The result y' is added to the

rates this present vertex from
its predecessor,
3. This Yo is then taken through 3. This Xo is taken through a
a pair of elastic mirrors. pair of clastic mirrors.

2. From the uniform distr, we
draw 0= Z2 < 1. The from the

distribution function.
Fix) = _/' gx)dx = 72

we draw an increase Xo of the
interval (duration) that sepa-

4. The result x' is added to the

amplitude (ordinate) of the interval (duration) that was
same vertex of the preceding separating same vertices in the
PWF, preceding PWF,
5. This new value y (after it has) 5. This new value x (after it has
been taken through a 2d pair been taken through a 24 pair
of elastic mirrors) gives the of elastic mirrors) gives the in-
amplitude (ordinate) of the terval (duration) that separates
present vertex of the actual the present vertex from the
PWF, preceding one of the actual
PWF. b
= | e T S MropE
v

sample by sample linear interpolations of the PWF amplitudes
(ordinate) that are separated by this x interval (duration) : 44100

sample is ended, then :

procedure,

Having used all contributions of the dyn%-routes of this

a. If the samples of this PARAG(psi%)-sequence are not ended, we ¢
dyn%-routes for the next sample, by repeating the above procedure.

b. If the samples of this Pﬁmstpd%}-anqum are ended, then are i
next PARAG(pai%}-saquem: (in agreement with the TABLE of the PARA

sequence PARAG(psi%) and as soon as the above computation for just one

anew the contrit

ntroduced in the main programme the DATA of the
G{psi)-sequences) and we repeat the previous

c. If the last PARAG(psi%)-sequence of the TABLE has been computed then the task and the music are terminated,

of each one of the

v

samples/sec.,
v
) ¥ -
] arbitrary digital filtering of the amplitudes {ordinates) and/or of
the durations, ¥
v >g4 o wnt kel i a4 PR «3

For many-channel stereo music : a. compute from the start the same main programme as many times as there are channels; b, use
separate random-generator for each channel for the amplitudes and/or for the abscissa,
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" PROGRAMME*
'PAR AG3.BAS

"AUTOMATED COMPUTATION of the SOUND-PATCHES for GENDYI.BA&;_

*do RANDOMIZE n i
d with -32768 < n < 32767 g
! B n = 4000 i
5 then RANDOMIZE n * Uniform distrib.

0 = 4300: RANDOMIZE n
R o o S Y
psi% =3 ‘index of this data

‘programme.
ook ok ke skeok i

R$ = LTRIMS(STRS (psi%)) i

pri¥ = "prt" + R§: prt$ = pri§ + "DAT" 'file for sound-patches il

Q0% = "ARAGO00" + R$: Q0%. = Q0% + ".DAT" 'file for general data 1

"data file for the 13th dyn%-ﬁeld:

MO$ = "ARAG130" + R$: M0$ = MO$ + "DAT" _
M1$ = "ARAGI31" + R$: M1$ = M1$ + "DAT" g
M2§ = "ARAG132" + R$: M2§ = M2§ + "DAT"

’ i |

|
] iy
]

[

n

’################################################‘;

|

dyn% = dynMin%: horiz% = 1: % = 2: ecrvri% = 3: convrt% = 4: mkr =149

DIM DEBmax&(0 TO 20) "last sound-patch of this dyn%-field ' i

DIM D(0 TO 20)
DIM p(0 TO 20)

DIM ralon%(1 TO 20)
DIM U2&(0 TO 20)

‘coefficient for the exponential distribution

'extention of the time-interval (abscissa)
‘size of the upper second-elastic-mirror

*This programme has been lechnical]y realized with the help of :I
Marie-Héléne Serra (I.X.). A

I
‘probability for the Bernoulli distribution: 10 sps 1 'I
: Al
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&(0 TO 20) ’size of the lower second-elastic-mirror
giﬁ leerf%(o TO 20,0 TO 10) "there are ten possible filters per dyn%-field

0§ FOR OUTPUT AS #1 ’general data for the sequence

Ol:ril::r%Q=$1: vertcon% = 2 'indexes of the ampl.-ordinate for the screen
i ‘and the converter.
Nmax& = 10000000
dynMin% =1

x% = 16
?]y:;([:encc%) =0 'vert.screen-filter for GENDY1.BAS
ﬂ:—t%{vertmn%) =1 ‘vert.convert.-filter for GENDY1.BAS
WRITE #1, Nmax&, dynMin%, dynMax%, flrt%(vertec%), flrt%(vertcon%)

CLOSE #1

'
’
’
?

OPEN MO0§ FOR OUTPUT AS #1 ’as an example,this is the 13th dyn%-field
=13
e I13max% = 13 ‘number of divisions of the waveform
DEBmaxé&(dyn%) = 25 ’max.number of sound or silence sound-patches.
"proportionality factor and coefficient for
‘the exponential distribution:
D(dyn%) = mkr * .45/ (1.75 * 1.25) R H
p((cl))'rnn%}) = .35 ‘the BERNOULLI distribution.
ralon%(dyn%) = 9 'minimal time interval extention
filter%(dyn%, horiz%) = 1
filter%(dyn%, e%) = 1
filter%(dyn%, ecmt%))= l1
filter%(dyn%, convrt%) =
WRITE #1, dyn%, 113max%, DEBmax&(dyn%), D(dyn%), p(dyn%),
ralon%(dyn%), filter%(dyn%, horiz%), filter%(dyn%, e%), filter%(dyn%, ecrvrt%),
filter%(dyn%, convrt%)
CLOSE #1 v
OPEN M1$ FOR OUTPUT AS #1
Al3 = .01: B13 = 5: Ul181& = 1: V131& = -1: U2&(dyn%) = 7:
V2&(dyn%) = -7: Rdct13 = 1: distrPC13 = 1 _
WRITE #1, A(l??,nBIS, Ul31&, V131&, U2&(dyn%), V2&(dyn%), Rdct13, distrPC13
CLOSE #1
OPEN M2$ FOR OUTPUT AS #1
Ad13 = 1: Bd13 = 6: Ud131& = 2: Vd131& = -2: Ud132& = 20:
Vd132& = 0: Rded13 = 1: distrPD13 = 2 ¢
WRITE #1, Ad13, Bd13, Ud131&, Vd131&, Ud132&, Vd132&, Rdcd13, distrPD13

CLOSE #1
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L
]
’

'################################################&5
DIM TH&(0 TO 20, 0 TO 100) 'starting point (sample) of a sound/silence patch

DIM DUR&(0 TO 20, 0 TO 100)  ’'duration of that patch
DIM THpr&(0 TO 20, 0 TO 100) ’present starting point
DIM BED&(0 TO 20,0 TO 100) ‘variable for the computation of the patches
DIM sTHend&(0 TO 20) "last sample
’@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
OPEN prt$ FOR OUTPUT AS #1 "COMPUTING the sound or silence patches .
FOR dyn% = dynMin% TO dynMax%
'n = 4000 + 100 * psi% + 10 * dyn%: RANDOMIZE n
DEB& =0: [f p(dyn%) <= 0 THEN
‘ignore this dyn%field
GOTO Gp2
END IF

Gpl:

DEB& = DEB& + 1: yl = RND: y2 = RND

DR = -(LOG(1 - y2)) / D(dyn%) "patch-duration=EXPON.
"distrib/sec.
DUR&(dyn%, DEB&) = DR * 44100 'same in samples.
THpré&(dyn%, DEB&) = THpr&(dyn%, DEB& - 1) + DUR&(dyn%,
DEB&)
IF y1 < = p(dyn%) THEN "the sound is in this patchl!
TH&(dyn%, DEB&) = THpr&(dyn%, DEB& - 1)
THDUR = THDUR + DR
BED&(dyn%, DEB&) = BED&(dyn%, DEB&) + 1
DBE& = DBE& + 1

END IF

IF DEB& < DEBmax&(dyn%) THEN
GOTO Gpl

ELSE

FOR xi% = 1 TO DEBmax&(dyn%)
THend& = TH& (dyn%, xi%) + DUR&(dyn%, xi%): TELOS& =
TELOS& + DUR&(dyn%, xi%)
WRITE #1, BED&(dyn%, xi%), TH &(dyn%, xi%), DUR&(dyn%, xi%),
THend&, TH&(dyn%, xi%) / 44100, DUR&(dyn%, xi%) / 44100,
THend& / 44100
‘last sample of this dyn%-field

IF THend& >= sTHend&(dyn%) THEN
sTHend&(dyn%) = THend&
ENDIF
NEXT xi%
WRITE #1, THDUR, THDUR / (TELOS& / 44100), sTHend&(dyn%)
DURsec = (sTHend&(dyn%)) / 44100
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END IF
"against the overflow

sU2& = sU2& + U2&(dyn%)
sV28& = sV2& + V2&(dyn%)
THDUR = 0: TELOS& = 0: DBE& = 0
sTHend&(dyn%) = 0
Gp2:
NEXT dyn% : .
"Proportionality for less than 16 bits amplitudes (upper mirrors)
i o o o S S o S S S i A T S B A W R
FOR dyn% = dynMin% TO dynMax%
IF p(dyn%) > 0 THEN
IF dyn% = 1 THEN
OPEN Al1$ FOR OUTPUT AS #1: U28&(dyn%) = (98 / sU2&) * U2&(ldyn%)
WRITE #1, Al, Bl, Ull&, V11&, U2&(dyn%), V2&(dyn%), Rdctl, distrPC1
CLOSE #1
ELSEIF dyn% = 2 THEN

ELSEIF dyn% = 13 THEN
OPEN M1$ FOR OUTPUT AS #1: U2&(dyn%) = (98 / sU2%&) * U2&(dyn%)
WRITE #1, A13, B3, U131&, V131&, U2&(dyn%), V2&(dyn%), Rdct13, distrPC13
CLOSE #1

ELSEIF dyn% = 14 THEN

END IF
END IF
NEXT dyn% i
'Proportionality for less than 16 bits am plitudes(lower mirrors)
B e e e o S S S S A SIS A B S
FOR dyn% = dynMin% TO dynMax%
IF p(dyn%) > 0 THEN
IF dyn% = 1 THEN
OPEN Al$ FOR OUTPUT AS #1: V2&(dyn%) = (-98 / sV2&) * V28c_(d)'n%)
WRITE #1, Al, Bl, Ull&, V11&, U2&(dyn%), V2&(dyn%), Rdctl, distrPC1
CLOSE #1
ELSEIF dyn% = 2 THEN
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ELSEIF dyn% = 13 THEN :
OPEN M1$ FOR OUTPUT AS #1: V28&(dyn%) = (-98 / sV2&) * V2&(dyn%)

WRITE #1, A13, B13, U131%, V131&, U2&(dyn%), V28&(dyn%), Rdct13, distrP
CLOSE #1

ELSEIF dyn% = 14 THEN

END IF
END IF
NEXT dyn%

'((l\I“l(:()(((((«((«“«(«(((((((((((((“((((((“(((((((((((({(({({({«{{{«“
E

'GENDY1.BAS

"This programme controls several stochastic-dynamic sound-fields.
A stochastic-dynamic sound-field is made out of a wave-length T
"divided in Imax% segments (durations). Each one of these segments

'is stochastically varied by a cuamulated probability-distribution. i

"At the ends of each one of these segments are computed the amplitudes i
‘(ordinates) that will form the waveform polygone. Are defined: i
“for the duration abscissa a probability distribution and 2 times 2
elastic mirrors; for the amplitude ordinates a probability distri- \ 1
"bution and 2 times 2 elastic mirrors, In between the vertices a linear ]

"interpolation of points completes the waveform polygone.

'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;f.;;l,
"1st field: I

i
‘compute one sound-sample: k.
DECLARE SUB DYNAS1 (Ilmax%, SMP&, C1 1&, C12&, t11&, t12&, 11%, Nl&_','_l.rl

fh&, hf&, hh&)
‘compute the amplitude-ordinate:

i
i,

DECLARE SUB PCl (Tab11(), Tab12(), 1%, N1&)

i
"compute the time-abscissa: ?
DECLARE SUB PD1 (Tadl 1(), Tad12(), 11%, N1&) i

'2d field: b

18
' {
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"15th field p :

! te one sourl -samp L

cﬁ’incfm: SUB DYNASI13 (113max%, SMP&, C131&, C132&, t131&, t132&,
113%, N13&%, fh&, hfi, hh&)

’ ute the amplitude-ordinate:

OSEHICI;LARE SUB PC13 (Tabl131(), Tab132(), 113%, N13&)

‘compute the time-abscissa:

DECLARE SUB PD13 (Tad131(), Tad132(), 118%, N13&)

'14th field

(ololalaldldadadadddddaaadaadaa@eIE,
'Sample-file for output to the converter:
OPEN "C:\SOUND\S351.DAT" FOR BINARY AS #3
SON$ = "S351" ’sound number on disc

"8 8 8c8c 8c B 8c Be Be 8e 8 8e B 8c 8e B8 8o 8c 8o B Be 8 8e 8e 8 8e 8 8 8e 8 8e 8 8 8e B 8e 8 8 8e 8 82 80 80 8 8c e &c

rndj = 401 'rnd] initialises the random-number gene-
RANDOMIZE rndj ‘rator used through all this programme.
’-32768 < rndj < 32767
'LEHMER'’S random-number generators are also used.
"8 8c 8 8c 8c8c e 8 8c8c 8o 8 8c 8e 8o e 8c 8o 8o 8e 8 8o 8e e 8o 8o 8e 8 8o 8 8e & 8 8 8e & 8c & e & 8c 8 B 8c 8c & e &

DIM psi%(0 TO 31) ’for 32 sequences Psi%
DIM chD&(0 TO 31) ‘the greatest duration-length of a sequence.
8 8c Be 8 Be 8c 8¢ 8c 8 Be 8e B 8e 8 8e 8o 8c 8c 8 8c 8c 8c 8c 8c 8 8e 8 8c 8 8c 8e 8 8e 8 B 8c 8c 8 B B Be 8c 8e 8e & 8 & &

"psi% is the number of a given sequence. . '
'ysp% is an ordinal number from yspMin% to yspMax% used as an index for psi%.
'DEFINE HERE ypsMin% and ypsMax% and the order of a freely t:‘hosen
'succession of sequences psi% given in the SUB ARCHSEQ]1(yspMin%,yspMax%)!

'For example:
yspMin% = 1

Max% = 7 y
)C(JSIF:EN "SEQSON"FOR OUTPUT AS #1 'file to be used in the score
routine.
WRITE #1, SON$, yspMax%, yspMin%
FOR Min% = 0 TO yspMax%

Ysp CALL ARCHSEQ] (yspMin%, yspMax%)
WRITE #1, psi%

NEXT ysp%
CLOSE #1

'dynMin% and dynMax% (= minimum and maximum values of the dyn%-fields)
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‘are to be found in PARAG(psi%). ]
'l!lHH”TlTIlTlT!T!T!T!TI1'!T!T!HT!T!T!!!TlT!T!T!TlT!TI!!T!H!I!!II!!!Ilf!]'!]'!]'!IlI!T!TII!I!ll]'!HH”!T!T!T!IH!HHH

ysp%=yspMin%

CALL ARCHSEQ](ysp%, yspMax%)
’T!I!I!IIIll!l!ll!!Il!!l!!!!!!!!!!!Il!H!!!!!!!!!!!!!!!!!!I!I!I!I!I!!!T!!!I!Tl!!!!1!!!!l!!!!1!!!!!Tl!!!!l!!!f!!!!!l!!!!!l!

wwwwwwwwwwwwwwwwwwwwwwwwww

'Free dimensioning of the tables

"Tables for the ordinate values of the 11% segment for cumulation.
DIM Tabl1(1 TO 2,0 TO 90): DIM Tab12(1 TO 2, 0 TO 90)’K=1 or 2:IjMax%
'=90
"Tables for the abscissa values of the 11% segment for cumulation,
DIM Tad11(1 TO 2, 0 TO 90): DIM Tad12(1 TO 2, 0 TO 90)

"Tables for the ordinate values of the [9% segment for cumulation,
DIM Tab21(1 TO 2, 0 TO 90): DIM Tab22(1 TO 2, 0 TO 90)

]
»
Ll

"Tables for the ordinate values of the 113% segment for cumulation.
DIM Tabl31(1 TO 2, 0 TO 90): DIM Tab132(1 TO 2, 0 TO 90) i
"Tables for the abscissa values of the [13% segment for cumulation, )
DIM Tad131(1 TO 2, 0 TO 90): DIM Tad132(1 TO 2,0 TO 90) :
"Tables for the ordinate values of the 114% segment for cumulation, -;'
DIM Tabllil(l TO2,0TO 90): DIM Tab142(1 TO 2,0TO 90)

'dyn% = index of the stochastic subroutine DYNAS(dyn%);

’DEB&(dyn%) = ordinal index of the sound-patches of this routine;
'DEBmax&{dyn%} = last sound-patch of this routine;
'DUR&(dyn%,DEB&{dyn%)) = sound-duration whose ordinal number is
'DEB&(dyn%);

"TH&(dyn%,DEB&(dyn%)) = the SMP& sample at which each sound-patch
‘commences;

'SMP& = number of the running sample;

'ljmax% = number of subdivisions of a waveform time-length. I

DIM DEBmax&(0 TO 20)
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'max.patch numb.:dynMin%=0 TO

'dynMax%=20
DIM DEB&(0 TO 90)

"current patch numb.: 0 TO

"DEBmax&(dyn%)=90

ke "dynMax%=20
T ‘dynMax%=20
DIM TH&(0 TO 20, 0 TO 90) e

DIM DUR&(0 TO 20, 0 TO 90) o
DIM BED&(0 TO 20, 0 TO 90)

"in expon.dens.;dynMin%=0 TO

”in Bernoulli dens.;dynMin%=0 TO

’patch param.:dyn%=0 TO

'20,DEB&(dyn%)=0 TO 90

U28(0 TO 20

& ) "dynMax%=20
28(0 TO 20)

e 'dynMax%=20
DIM sTHend&(0 TO 20)
DIM flrt%(0 TO 2)
DIM filter%(0 TO 20, 0 TO 10)
DIM ralon%(1 TO 20)

"upper mirror size; dynMin%=0 TO
‘lower mirror size: dynMin%=0 TO

last sample of the considered dyn%.
'final screen or converter filter.

'ten available filters per field (dyn%).
'extention of abscissa.

'patch start:dyn%=0 TO "20,DEB&(dyn%)=0

*patch dur.:dyn%=0 TO ’20,DEB&(dyn%)=0

’readings of sequences’ data from files written by PARAG (psi%).

R$ = LTRIM$(STR$(psi%))

rt§ = "prt" + R$: prt$ = prt$ + ".DAT"
pQO$ = "KRAGOO' + R$: Q0% = Q0§ + ".DAT"

A0$="ARAG10" + R$: A0$ = A0$ + "DAT"

Al$ = "ARAGI11" + R$: A1§ = Al1$ + "DAT"
A28 = "ARAGI12" + R$: A2§ = A2% + ".DAT"

BO$"ARAG20" + R§: BO$ = BO$ + "DAT"

?
L
]

MO0$ = "ARAG130" + R$: M0$ = MO$ + ".DAT"

MI1$ = "ARAG131" + R$: M1$ = M1$ + "DAT"
M2$% = "ARAG132" + R$: M2§ = M2§ + ".DAT"

NO§ = "ARAG140" + R$: NO§ = NO$ + ".DAT"

'sound-patches data-files.
‘general data-file for all
'sequences.

'specific data for 1st
'dyn%-field.

'specific data for 13th
'dyn%-field.
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T
'specific data for 14th SE #1
, 'dyn%-field. A5 o
' | OPEN M1$ FOR INPUT AS #1
' ! INPUT #1, A13, B13, U181&, V131&, U2&(dyn%), V2&(dyn%), Rdct13,
- o distrPC13
'000EEEEEEEEEEeeEREEEEEEeEREEEEEEEREEE skl
oriz% = 1: €% = 2: ecrvrt% = 3: convrt% = 4 'filter indexes i OPEN M2$ FOR INPUT AS #1
sl L B S 'l.' INPUT #1, Ad13, Bd13, Ud131&, Vd131&, Ud132&, Vd132&, Rdcd13,
‘general data-files for the dyn%-fields. distrPD13
i 4 CLOSE #1
NPUT AS #1 &
J 1
g;t_‘l(;{g]lg‘ i }. Nmax&, dynMin%, dynMax%, flrt%(1), frt%(2) ¢ S;E%N=Nﬁf RO IR A
"8e B Be BB e B B BeBe e B B e B Be e B B BB e & 8 BB B e & e e e L oL Rl it AR S S
Een 888 Be8lelele i :
‘specific data-fles for <ach dynoshets 8888l Zﬁ?ﬁfﬁﬁlﬁﬁﬁdﬁﬁ; t};;lz%), filter%(dyn%, e%), filter%(dyn%,
’
OPEN A0$ FOR INPUT AS #1 . :
dyn% = 1 i i

INPUT #1, dyn%, I1max%, DEBmax&(dyn%), D(dyn%), pp(dyn%), i
ralon%(dyn%), filter%(dyn%, horiz%), filter%(dyn%, e%), filler%(dyn%,
ecrvrt%), filter%(dyn%, convri%s) T

CLOSE #1 i

OPEN Al$ FOR INPUT AS #1 8

INPUT #1, A1, B1, Ull&, V11&, U2&(dyn%), V28&(dyn%), Rdct1, distrPC1 )

e o o o e

"Reading of the starting sampling-points DEB&(dyn%) of
’sound-patches in each dyn%-field.

CLOSE #1 B

OPEN A2$ FOR INPUT i :

INPUT #1, Ad1, Bd] Ucﬁsl;f lvau A OPEN prt§ FOR INPUT AS #1

Closr e o ’ &, Ud12&, Vd12&, Rdcdl, distrPD1 | FOR dyn% = dynMin% TO dynMax% loop on the dyn%-fields
; gy IF pp(dyn%) < = 0 THEN "for ignored dyn%-fields.

B0$ FOR INPUT AS #1 T GOTO Ibgl10

dyn% =9 i/ END IF

FOR xi% = 1 TO DEBmax&(dyn%) "loop on the sound/silent
A ' 5 "patches.

oL INPUT #1, BED&(dyn%, xi%), TH&(dyn%, xi%), DUR&(dyn%, xi%),
! THend&, THsec, DURsec, Thendsec

" TELOS = TELOS + DUR&(dyn%, xi%) / 44100

o NEXT xi%

ralon%(dyn%}, ﬁlter%(dyn%, horiz%), filter%(dyn%, e%), ﬁlter%(dyn%,

INPUT #1, dyn%, 12max%, DEBmax&(dyn%), D(dyn%), pp(dyn%),
ecrvrt%), filter%(dyn%, convri%) f

:I.- INPUT #1, THDUR, THDURpcent, sTHend&(dyn%)
- ' 4 TELOS = 0

b B B B o o o o
OPEN M0§ FOR INPUT AS #1 ;.I "Lhc longest of the dyn%-field durations in this sequence {psi%} is:

i

dyn% = 13
IF megDUR <= sTHend&(dyn%) THEN
INPUT #1, dyn%, 113max%, DEBmax&(dyn%), D(dyn%), pp(dyn%), . e i :i:e}:m)mﬂmend&(d)'n%)

ralon%(dyn%), filter%(dyn%, horiz%), filter%(dyn%. % : :
ecrvet®), Slter(dyn%, corvitsh) o(dyn%, e%), filter%o(dyn%, 1“ .gLeiﬁIon is the longest dyn%-field

| END IF
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1bg10:
NEXT dyn%
CLOSE #1 -
'++++++++++++++++++++++++++++++++++++++++++++
chD&(psi%) = megDUR
sDURech = sDURech + chD&(psi%)

‘cumulation of the longest
'sequence -durations.
'duration in minutes,

DURIlept = INT(sDURech / (44100 * 60))

DURsec = (sDURech / 44100) MOD 60 'duration in seconds.
megDUR = ¢
e;&e;::??r:‘&rrrrrir&irrrrrr&&;?&ef“"1““*********i**“““‘“i“**

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

FOR dyn% = dynMin% TO dynMax%
DEB&(dyn%) = 1

’starting number of the

‘sound or

NEXT dyn% ‘silence patch for each
'dyn%-field.

CALL WINDO

'screen window.
SECN = SMP& / 44100 ‘running sample.

SPM& = SMP& MOD 44100 ’running seconds.
PRINT SMP&: PRINT SECN: PRINT sampl&: PRINT sec
dyn% = dynMin%

SMP& =0 'sample number.
f% = 0 'screen amplitude of

’a current sample.
hf& =0

‘converter amplitude of
"a current sample.
"check of the dyn%-fields

‘amount still availabble.

Kdyn% = dynMax% + 1

TELEN% = 0 'for testing the music-piece
end.
'MAIN PROGRAMME
Ibg2:

"This part concerns the computation of the amplitude (ordinate) at

'a given sample SMP& by adding up the sound contributions of all
‘dyn%-fields in a row from dynMin% to dynMax% with their

"patches DEB&(dyn%),their starting samples TH&(dy‘n%,DEB&(dyn%)) and
"their durations DUR&(dyn%,DEB&(d)m%)).This computation defines
'concurrenr.ly the amplitude and time elements of the waveform polygones.

IF DEB&(dyn%) > DEBmax&(dyn%) THEN

IF Kdyn% = dynMin% THEN
TELEN% = 1: GOTO lbg5

Formalized Musijc
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ELSE
GOTO Ibg0
END IF
SMP& < TH&(dyn%, DEB&(dyn%)) THEN
o GOTO Ibg0
HEN
IF SMP& = TH&(dyn%, DEB&(dyn%)) T
" IF DUR&(dyn%, DEB&(dyn%)) <> 0 AND BED&(dyn%,
&(dyn%)) = 1 THEN
B e GOTO Ibg3 'begining of DYNAS[dyn%]
ELSE fh& = 0: hh& =0
GOTO Ibg5 'no DYNAS[dyn%)]
END IF
ELSEIF SMP& < = TH&(dyn%, DEB&(dyn%)) + DUR&(dyn%, DEB&(dyn%))
, DEB&(dyn%)) = 1 THEN
i i ('{."O)?;‘O);bg‘i ‘continuation of DYNAS[dyn%)]
%) <= DEBmax&(dyn%) THEN
s IF DEB&(dyn%) = DEBmax&(dyn%) THEN
Kdyn% = Kdyn% - 1
END IF
DEB&(dyn%) = DEB&(dyn%) + 1
GOTO lbg?2
= 1
IF dyn% < dynMax% THENyn% = dyn% +
s 4 GOTO Ibg?2
ELSE GOTO lbgb
ENDIF
i IF dyn% < dynMax% THEN
dyn% = dyn% + 1
GOTO Ibg?2
ELSE
fh& = 0: hh& =0
GOTO Ibgh
END IF
lbg3: LA
‘contribution of a dyn%-field DYNAS[dyn%] at the start:

IF dyn% = 1 THEN

ClePenetr% = 1
CALL DYNASI1(I1max%, SMP&, C11&, C12&, t11&, t12&, I1%, N1&, fh&, hfX,
hh&)
GOTO lbgh

ELSEIF dyn% = 2 THEN

GOTO lbg5
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ELSEIF dyn% = 13 THEN % = % + fh& 'to screen.
ClePenetr% = 1 hf% = hf% + hh& 'to converter.

CALL DYNASIB(Il3max%, SMP&, C131%&, C132&, t181&, t132&, 113%, N13&,

'incremen.of the dyn%-field.
fh&, hf&, hh&) ‘ )
GOTO Ibgs IF dyn% < dynMax% THEN
ELSEIF dyn% = 14 THEN i dyn% = dyn% + 1
; ! GOTO Ibg?
: i END IF
: i 1bg6:
END IF 8

] ’screen ordinate
Ibg4: ) Uk = 99: V& = -99: Q = ff%
"Contribution of a dyn%-field DYNAS(dyn9%) after DEB&(dyn%) = 1 is ended. ' CALL MIRO(U&, V&)
"This is realized with ClePenetr% = 0. ff% =Q

"vertical screen filter (flrt%(vertec%=1))

'mirrors: first pair.

IF dyn% = 1 THEN :

CALL DYNASI(I1max%, SMP&, C11&, C19g, tl&, t12&, 11%, N1&, fhe&, hig, vertec% = 1
hh&) IF flrt%(vertec) = 0 THEN
GOTO Ibg5 GOTO sfltl
] ELSEIF dyn% = 2 THEN i END IF
j » Q = (ffprecl% + ff%) / 2 ‘filter
: Q = (ffprecl% + fiprec2% + %) / 3 :ﬁlter
; ffprec2% = fiprecl% ’ﬁhﬂ'
A fiprecl% = ff% filter
GOTO Ibg5 fi% = Q
ELSEIF dyn% = 13 THEN 1 sflel:
CALL DYNAS13(I18max%, SMP&, C1314&. Cl32&, 1131&, t132&, 113%, N13&, ord2% = {f%
fh&, hf, hh) % = 0
GOTO Ibgh A "converter ordinate (for file)
ELSEIF dyn% = 14 THE ] :
i i1 e K Uk = 32767: V& = -32768: Q = hfk%
j CALL MIRO(U&, V&)
i -‘ hi% = Q
' "vertical converter filter (vertcon%=2)
; END IF
; vertcon% = 2
lbg5: : : IF flrt%(vertcon%) = 0 THEN
: cumulation of amplitudes (ordinates) at a current sample-point SAMP&. '- GOTO sflt2
=============:=====:====::====================== ) END IF
’end-test of the usic-piece: ' }
: . » Q= (hfprecl& + hf&)/2 “filter
IF TELEN% <> 0 THEN ' Q= (hfpreclf + hfprecole + h%)/ 3 “filer
SOUND 500, 500 / 200 ' hfprec2& = hfprecl& filter
SOUND 2000, 2000/ 100 hfprecl& = hf& “filter
GOTO Ibgs sflt2:
END IF

! "final ordinate
e o L y
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hf& = Q

IF SMP& < 400000000 THEN

'(400000000 is an arbitrary number.)

“for the screen,if we wish to show the resultant:
LINE (abs1%, ord1%)-(abs2%, ord2%)

abs1% = abs2%
ord1% = ord2%
SMP& = SMP& + 1
samplé = samplé& + 1 ‘global sampling
"point
END IF
‘change of sequence.,
IF SMP& <= chD&(psi%) THEN
GOTO lbg9
ELSE
ysp% = ysp% + 1
IFysp% < yspMax% THEN 'yspMax% =
‘maximum number
GOTO lbgl "of sequences.
ELSE
GOTO Ibg8
END IF
END IF
Ibg9:

abs2% = sampl& MOD 639 "global screen
‘abscissa.
IF abs2% = 0 THEN
absl% = 0
' ENDIF
LG s it e b s i T S N
,every point is now written in the converter file,

sample% = hf&
hff& =0
' PUT #38, , sample% 'in the converter
DRSS bt R SO
chronologies and beep signals.
1)

SECN = SMP& /44100
secd = sampl& / 44100
SPM& = SMP& MOD 44100
IF SPM& > = 0 AND SPM& 2 THEN

SOUND 1000, 1000/ 500

"prints the seconds

END IF
IF abs2% = 0 THEN
SOUND 500, 500 / 200
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SOUND 2000, 2000 / 500
CALL WINDO: PRINT SMP&: PRINT SECN
PRINT sampl&: PRINT secnd
END IF
188 &&EEEEEEEEEEEEELELEELEE L& L& &L &E&EELLEE L& E&&&ELE&E
Ibg7:
dyn% = dynMin%
% = 0: hf& =0
GOTO lbg?
Ing:
CLOSE #3 ' 'the converter
END

SUB DYNAS13 (I13max%, SMP&, C131&, C132&, t131&, t132&, 113%, N13&,
fh&, hf%, hh&) ;

"This is the 13th dyn%-field subroutine of the main programme that commands
*the contribution of this dyn%-field to the amplitude-ordinate and the time-
"abscissa of the waveform polygone that are sent both to the screen and the
"digital-to-analog sound-converter into the main programme GENDY1.BAS,

SHARED ClePenetr%, Q13, Qd13, dyn%, DEB&(), Nmax&, dynMax%, TELEN%,
M1§, M2§

SHARED Tabl31(), Tab132(), Tad131(), Tad132(), TH&(), DURS&(), DEBmax&(),
U2&(), V2&()

SHARED ralon%(), horiz%, €%, ecrvrt%, convrt%, filter%()

SHARED aampl, campl, mampl, xampl

SHARED aabsc, cabsc, mabsc, xabsc

STATIC el3&, pl13&, t13&, fl13precl&, fl3prec2&, h13precl&, h13prec2&
STATIC Al3, B13, U131&, V131&, Rdctl3, distrPC13

STATIC Ad13, Bd13, Ud131&, Vd131&, Ud132&, Vd132&, Rdcd13, distrPD13

IF ClePenetr% = 1 THEN
"Input of the stochastic-distribution coefficients,of the elastic-
"mirror sizes,of a reduction factor and of the specific stochastic-
"distribution used for computing the amplitude-ordinates of the
'waveform polygone.

OPEN M1$% FOR INPUT AS #1

INPUT #1, A13, B13, U131&, V131&, U2&(dyn%), V2&(dyn%),
Rdctl3, distrPC13

CLOSE #1

’Same kind of input as above but now, for the time-intervals .
OPEN M2% FOR INPUT AS #1

INPUT #1, Ad13, Bd13, Ud131&, Vd131&, Ud132&, Vd132&,
Rdcd13, distrPD13

CLOSE #1
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ELSEIF ClePenetr% = 0 THEN

GOTO 1bl139
ELSEIF DEB&(dyn%) 1 THEN

GOTO 1b1187
END IF
1b1137:

N13& = 2: PSET (0, 0): C1318& = SMP&

Ibl131:

IF N13& MOD 2 = 0 THEN
'K% = alternat.ing switch for cumulating in tables; preced. or present period.
K% = 2: GOTO 1bl132
ELSE
K% = 1: GOTO Ibl135
END IF
1b1132: *
"first ordinate of the new period = last ordinate of the preceding one.
Tabl31(K%, 0) = Tabl31(K% - 1, [18max%)
Tabl132(K%, 0) = Tab132(K% - 1, 113max%)
Tadl31(K%, 1) = Tadl31(K% - 1, I13max%)
Tad132(K%, 1) = Tad132(K% - 1, 113max%)
GOTO Ibl136
1b1135:
Tabl31(K%, 0) = Tabl31(K% + 1, I13max%)
Tab132(K%, 0) = Tabl32(K% + 1, I13max%)
Tad131(K%, 1) = Tad131(K% + 1, 113max%)

Tad132(K%, 1) = Tad132(K% + 1, I13max%)
Ibl136:

113% = 1
1bl133:
pl3& =0
’cornputing the Imax ordinates,

CALL PC13(Tab131(), Tab132(), 113%, N13&)
’computing the Imax abscissa-intervals.

CALL PD13(Tad131(), Tad132(), 113%, N13&)

el3& = Qd13 " horizontal abscissa filter
IF ﬁlter%(dyn%, horiz%) = 0
THEN

GOTO f131r1
END IF
€13& = (PDprcl31& + PDprcl132& + Qd13)/ 3'filter
PDprcl132& = PDprcl81& filter
PDprcl31& = Qd13 filter
f13Irl:
IF N13& MOD 2 = 0 THEN
K% = 2: GOTO 1bl134
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ELSE
K% = 1: GOTO Ibl134
END IF

"Drawing the polygone of period T113

Cl132& = C131& + el3&

sc% = 639

t1318& = Tab132(K%, 113% - 1): t132& = Tab132(K%, 113%)
t138& = t132& - t131&

'LINEAR INTERPOLATION OF ORDINATES
‘in-between the abscissa C131& and C132&

1b1139: ’extension of abscissa (= ralon%)

IF filter%(dyn%, %) = 1 THEN
€l3& = ralon%(dyn%)
END IF
IF p13& > e13& THEN
GOTO Ibl1310
ELSEIF pl3& = el3& AND el3& <> 0 THEN
GOTO Ibl1310
ELSEIF el3& = 0 AND ﬂlter%(dyn%, e%) = 0 THEN
el3& =1
END IF
pl3& = p13& + 1
fhé& = pl3& * t13& /el3& + t131&
"Attack and decay of a sound-patch,
DIAFA& = SMP& - THé&(dyn%, DEB&(dyn%))
IF DIAFA& = 0 AND DIAFA <= 500 THEN
fh& = fh& * DIAFA& / 500

END IF
DIAFDIM& = TH&(dyn%, DEB&(dyn%)) + DUR&(dyn%, DEB&(dyn%)) -
SMP&
IF DIAFDIM& <= 1000 THEN
fh& = fh& * DIAFDIM& / 1000
ENDIF
'Acoustic Normalisation
3 hh& = fh& * 32767 / 100

'screen’s vertical filter

IF filter%(dyn%, ecrvrt%) = 0
THEN
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GOTO f13ir3
END IF
* ffh& = (f13precl& + th&)/2 : "filter
flh& = (f13prec1& + th&)/2 " filter
ffhé& = (f13prec1& + f13prec2& + &) /3 filter
f13prec2& = f13prec1& "filter
f13precl& = & filter
fth& = ffh& filter
f131r3:
‘converter’s vertical filter
IF filter%(dyn%, convrt%) = 0
THEN
GOTO f13Ir4
) ENDIF
hhh& = (h18precl& + hh&)/2 filter
hhh& = (h13prec1& + h13prec2& + hh&)/ 3 "filter
h13prec2& = hl3precl& filter
hl3precl& = hh& filter
hh& = hhh& "filter
f131r4:
ClePenetr% = 0: EXITSUB
Ibl1310:
Cl131& = C132&
'next segment of the period T113 or next period.
IF I13% < I113max% THEN
I13% = 118% + 1: GOTO Ibl133
ELSEIF N13& < Nmax& THEN
N13& = N13& + 1: GOTO 1bl131
ELSE TELEN% = 1: EXIT SUB
END IF
END SUB

SUB PC13 (Tab131(), Tab132(), 113%, N13&)

‘Subroutine of the 13th dyn%-field that computes the amplitude-
‘ordinate of the vertices for the waveform polygone.

SHARED dyn%, Q, SMP&, fh&, hik, ClePenetr%, M1$, prcls1, prcl32, U2&(),
V2&()

SHARED aampl, campl, mampl, xampl
STATIC Al3, B13, U183 1&, V131&, Rdct13, distrPC13
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IF ClePenetr% = 1 THEN

ic-distributi fficients,of the elastic-
'Input of the stochastic-distribution coe of :
‘:::il:ror sizes,of a reduction factor and of Ll'{e spemﬁc. stochastic-
'distribution used for computing the amplitude-ordinates of the
'waveform polygone.

EN M1$ FOR INPUT AS #1
?;PUT #1,Al13, B13, Ul31&, V131&, U2&(dyn%), V2&(dyn%), Rdct13,

distrPC13
CLOSE #1
END IF
IF N13& MOD 2 = 0 THEN
K% = 1
ELSE
K% = 2
END IF

' : dom- ber generator:

g S;::ipclnz ?{l:(;nmpl ‘gaampl + campl) / mampl - INT((xampl * aampl +
campl) / mampl)) * mampl
z = xampl / mampl

'Built-in random-number generator:

; z=RND ;
pi = 3.14159265359#: vang = 2 * pi/ 44100
DO WHILEz =0
z = RND
LOOP
IF distrPC13 = 1 THEN
;(;‘:EICEYA;lg * TAN((z - .5) * pi): Q13 = Tabl31(K%, 113%) + Cauchy
3 ELSEIF distrPC13 = 2 THEN
"LOGIST.:
LL= «LOG((1 -2)/ z) + B13)/Al3: Q13 = Tab131(K%, 113%) + L
ELSEIF distrPC13 = 3 THEN
5 RBCOS.:
hHiP=EA13 * LOG(TAN(z * pi/ 2)): Q13 = Tab131(K%, 113%) + hypc
4 ELSEIF distrPC13 = 4 THEN
i E: ‘
af:iisiils * (5 -.5*SIN((.5 - 2) * pi)): Q13 = Tab131(K%, 113%) + arcsin
ELSEIF distrPC13 = 5 THEN
”"EXPON.:
: = %, 113%) + expon
= -(LOG(1 - z)) / A13: Q13 = Tab131(K%,
i ( ELSEIF distrPC13 = 6 THEN
::Snlll:lgil?' * SIN(SMP& * vang * B13): Q13 = sinu 'validate coresp.expression
END IF
U& = Ul31&: V& = V131&: Q = Q13
CALL MIRO(U&, V&)
Q3 = Q
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IF K% = 1 THEN
Tab131(2, 113%) = Q13
ELSE
Tab131(1, 113%) = Q13
END IF
Q13 = Q18 * Rdctl3
'QI3 = QI3
Q13 = Tab132(K%, 113%) + Q13
U& = U2&(dyn%): V& = V2&(dyn%): Q = Q13

CALL MIRO(U%&, V&)
i 'valeur filtree filter
: Q = (prcl31 + Q) /2 i
d 'Q = (prcl31 + prcl32 + Q)/3 "
; 'prcl32 = prcl81 i
N prcl3l = Q b
QI3 =Q

IF K% = 1 THEN
Tab132(2, 113%) = Q13
ELSE
Tab132(1, 113%) = Q13
END IF
END SUB

SUB PD13 (Tad131(), Tad132(), 113%, N13&)
’Subroutine of the 138th dyn%-field that computes the time-interval
"between two vertices of the waveform polygone.

SHARED Q, Qd13, I13max%, SMP&, fh&, hf&, ClePenetr%, M2$
SHARED aabsc, cabsc, mabsc, xabsc

STATIC Ad13, Bd13, Ud131&, Vdi31&, Ud132&, Vd132&, Rdcd13, distrPD13

IF ClePenetr% = 1 THEN

"Input of the stochastic-distribution coefficients,of the elastic-
‘mirror sizes,of a reduction factor and of the specific stochastic-
"distribution used for computing the time-interval in-between
‘two verices of the waveform polygone.

OPEN M2§ FOR INPUT AS #1
INPUT #1, Ad13, Bd13, Ud131%, Vd131&, Ud132&, Vd132&,
Rded13, distrPD13

CLOSE #1
END IF
IF N18& MOD 2 = 0 THEN
K% =1
ELSE
K% = 2
END IF
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) ER’S random-number generator:
-ggcz({xabsc‘aabsc +cabsc)/mabsc-INT((xabsc*aabsc +cabsc)/mabsc))*mabsc
z= xabsc / mabsc
'Built-in random-number generator:
z = RND L
pi = 3.14159265359+#: vang = 2 * pi [ 44100
DO WHILEz =0
z=RND
LOOP
IF distrPD13 = 1 THEN
"CAUCHY:
C?:Ch)’ = Ad13 * TAN((z - .5) * pi): Qd13 = Tad131(K%, 113%) + Cauchy
ELSEIF distrPD13 = 2 THEN
"LOGIST.:
L = -(LOG((1 - z) / ) + Bd13)/ Ad13: Qd18 = Tad131(K%, 113%) + L
ELSEIF distrPD13 = 3 THEN
*HYPERBCOS.:
hypc = Ad13 * LOG(TAN(z * pi/ 2)): Qd13 = Tad131(K%, 113%) + hypc
] ELSEIF distrPD13 = 4 THEN
"ARCSINE: :
'::gin =Ad13 *(.5 - .5 * SIN((.5 - z) * pi1)):Qd13 =Tad131(K%, 118%) + arcsin
ELSEIF disrPD13 = 5 THEN
"EXPON.:
expon = -(LOG(1 - z)} / Ad13: Qd13 = Tad131(K%, 113%) + expon
ELSEIF distrPD13 = 6 THEN

"SINUS: J .
sinu = Ad13 * SIN(SMP& * vang * Bd13): Qd13 = sinu 'validate coresp.expression

END IF
Uk = UdI31&: V& = Vd131&: Q = Qd13
CALL MIRO(U&, V&)
Qd13 =Q
IF K% = 1 THEN
Tad131(2, 113%) = Qd13

ELSE
Tad131(1, I13%) = Qd13

END IF
Qd13 = Qd13 * Rdcd13

’Qd13 = Qd13

Qd18 = Tad132(K%, 113%) + Qd13
Uk = Ud132&: V& = Vd132&: Q = Qd13
CALL MIRO(U&, V&)
Qdi13 =Q
IF K% = 1 THEN
Tad132(2, 113%) = Qd13
e Tad132(1, [13%) = Qd13
END IF
END SUB
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TWO LAWS OF CONTINUOUS PROBABILITY
First Law
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Let 04 be a segment of a straight line of length / on which we place n
points. Their linear density is ¢ = n/l. Suppose that / and 7 increase in-
]
|

definitely while ¢ remains constant. Suppose also that these points are

numbered 4;, 4,, 4, . . . and are distributed from left to right beginning at |
SO=S332,ysmi Tivsive 8Poe= 2;dunMiniSecz 2:13; totMin : Secz 2113 the origin 0. Let

6@ 0 80 ‘ 9 109 118 126 \ %y = AyAp, x5 = Apdy %3 = AA,, . .., % = A A,

1ein sl ' . ; ; S fi- S e | ;
- ' ' e : R st : :.: :%I The probability that the ith segment will have a length x; between x
- + 2 t I ! 2 SR -l----l-——q—-—-|--—|3}_‘.’ and x + dx is
e e PP R S I I R R R | P, = e~°%¢ dx.
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y ' : hisitae Gl ! ARG ikl R Rl R, I Now the probability p,, that there will be z points on a segment x, is
SN O L + + + + 5 + p— e ] + I i -
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P ]t —t— ] I dowl] e ] 1 el I ,9 Pn+1 ox
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. If x is very small and if we denote it by dx, we have

2 U
Two pages of the “score” resulting from the programme reproduced here. E I po=1- cdx + RO
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Since the powers of dx are infinitely small for high values, p, = 1 — ¢
and p, = cdxp, = cdx. Hence, the probability P, is composed of ¢
probability p, = e~¢%, that there will be no point on the segment x,and t
probability p, = ¢ dx, that there will be a point in dx.

APPROXIMATE CALCULATION OF THE SAME PROBABILITY
(FOR CALCULATION BY HAND)

Let there be 4 points to be placed on a straight line of length . T
linear density is ¢ = d/l points on length /. If the lengths are expressed
units o then / = av (¢ > 0) and e = d/a points in the unit of length 2,

Thenx; =i (i = 0,1,2,3,...), and the probability, the asymptotic
limit of the relative frequency of the segment x;, will be

Py, = e %Ax, (1

We shall now define the quantity Ax,. The probability (1) is compose
of the probability p, = e~°", that there will be no point on x;, and th
probability p; = cAx,, that thcre will be a point in Ay, if (cAx,)? is small
enough to be ignored. Set

0.< (edx)? < 107~
where 7 is a sufficiently large natural number; this expression becomes
0'< Ag < £~ 107NR, ¥
Substitute a constant z for Ax, such that for every r
< Ay, < ¢71.10-72, )
Then equation (1) is written
By, e g=Wogn (3

and must satisfy the condition

i=ao

Z "oz = ],
=0
or

i=om
7 = llc‘-z g
i=0

But since cv > 0, e7¢* < 1, so that '

::2: (=) = 1/(1 — e=v) 1

and finally
1 — g~

L2 = —. "

¢
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Now from (2)
I s e lo-n.fz
<

Therefore
Qi (1 —e o) < 1002

then
(l = T10"%3) <t oy

Thus, for cv > 0 we have e~ < I, and for v < —log (1 — 107"2) we
have e~® > (1 — 10~™2), And since 0 < 10-"2 < 1 we have

= e 10-22  [g-u3  [)-(u24
B (] - D=0y eg -

and
10-™2 < — log (1 — 10~™2),

In order that e~¢¥ > 1 — 10~-™2 it is therefore sufficient that
= 10-M3, (4)

Then we may take
1l —e @
i

Axy = z = (5)
and substitute this value in formula (1), from which we can now set up
probability tables. Here is an example:

Let d = 10 points as mean value to be spread on a straight line segment
of length / = 100 cm. We have to define x; and P, as a function of i, given
that (cAx;)? = 10~* is considered to be negligible.

From (4), ev = 107*2 = 0.01 points in 2. Now ¢ = dJ{ = 10/100
points/cm, therefore ¢ = 0.1 points/cm, » = 0.01/0.1 = 0.1 cm, and x; =
0.1 cm = ¢ mm.

From (5),
1 ol 8—0.01
A = == = (1 = 0.9905)10 = 0.0995 = 0.1 cm.
From (1),

P, = ¢7°1.0,1-0.1 = 0.01-(0.099005)".

For calculation by machine see Chapter V.
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Second Law
a2 ¥
f@di=3(1-2) 4.

Each variable (pitch, intensity, density, etc,) forms an interval (
tance) with its predecessor. Each interval is identified with a segment
taken on the axis of the variable. Let there be two points A and B on thi
axis corresponding to the lower and upper limits of the variable. It is then
a matter of drawing at random a segment within 4B whose length is
included between j and j + dj for 0 < J = AB. Then the probability of t
event is:

fora = AB.

APPROXIMATE DEFINITION OF THIS PROBABILITY FOR CALCULATION‘_ZI'_-

BY HAND

By taking dj as a constant and J as discontinuous we set dj = ¢, J=u

withv = a/mfori = 0,1,2,3, ..., m. Equation (1) becomes

2 i
But
& 2 20 '3 . 2(m + 1) 2com(m + 1)
ZP=gmen-Z5 -2t Zmmil)
whence
{ a
it m + 1

On the other hand P, must be taken as a function of the decimal

approximation required:

2 tl -n v
P’=m+l(l—'5)£]0 T

P; is at a maximum when i = 0, whence m > 2.10" - 1; so for m = b
2-10" — 1 we have v = 4/(2-10" — 1) and 4j = a/(2-10"), and (1)

becomes

1 i
P’=P*=W(l*2-_mf'1‘)'
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Appendix IT
DEFINITION OF THE SAME PROBABILITY FOR COMPUTER
GALCULATION

We know that the computer can only draw n.u-mbcrs Y at ranldom (of
equal probability) 0 < y, < 1. Using the probability law of density P; =
£(j) dj, we have for some interval x,

Zo abt Lok 2x o5
prob. (0 j < x) = [ f) 4 = 22 - 2 = Fixy),

where F(x,) is the distribution function of j. But F(x,) = prob. (0 < y < y,)
= y,- Therefore

o .5 Ly andong =l £/ =0k

and by rejecting the positive root, since x, must remain smaller than a, we

obtain

% = a[l — /(1 — y,)]

forall 0 < %, < a.

Appendix II
[14]

Let there be states £y E,, Es .. ., E, with r < 00.;'and let one of thefs;—:l
events necessarily occur at each trial. The probability that event E, wi
take place when E, has occurred at the previous trial is py;;

o=l withi =12 . o8
k

P is the probability that in » trials we will pass from state E,, to state £, ;
ZP}:L) =11 owath ok =S LS SN
k

If for n — o0 one of the P{? tends towards a limit P, this limit is
expressed by the sum of all the products Py;p;., j being the index of one of
the intermediate states E; (1 < j < r):

Pue = Puipay + Propoy ++ - + Py
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The sum of all the limits Py is equal to 1 :

]Jhl+Ph2+Ph3 ok B e ],

We can form tables or matrices D™ as follows:

(n} (n)
Pll) le: il P;?)

= v Tl (n) (n)
D I8 le: P??m LA P,E:;)

(n) (n)
Plr} P2r: xRy P;?)

Regular case. If at least one of the tables D™ contains at least one line

m of which all the elements are positive, then the P have limits Py, and
among the P, therc exists at least one, P ’
independent of » and of 4. This is the regular case.

Positive regular case. If at least one of the tables D™ has all positive 1
elements, then all the Py, have non-zero limits P, independent of the initial

index A. This is the positive regular case.,

The pr:obabﬂities P, = X, constitute the system of solutions of the
r + 1 equations with 7 unknowns:

X = Xpy, + Aoy +---+ X, p,

Xy = Xip1o + Xopog + - + D, &
Xs = Xips + Xopos + -+ + Xibrs

Xm 7 lelm r X2p2m e errm

Xr T lelr & X2ﬁ2r ik anrr
l=X+ X +--.+ X,

Bpt these equations are not independent, for the sum of the first r equations
yields an identity. After the substitution of the last equation for one of the
first 7 equations, there remains a system of 7 equations with r unknowns
Now there is a demonstration showing that in the regular case the s stern.
has only one solution, also that D™ — D™ (nth poweLr of D), ¢
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m» Which has a non-zero limit
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THE NEW UPIC SYSTEM *

Introduction

UPIC (Unité Polyagogique Informatique du CEMAMu)! is a machine
dedicated to the interactive composition of musical scores. The new and
final version of this system runs on an AT 386 microcomputer connected to
a real-time synthesis unit. The new software offers a mouse-controlled,
“user-friendly” window style graphical interface and allows real-time
drawing, editing and playing of a musical page as well as the recording of a
“performance.”

Description

The UPIC is a music composing system which combines a graphic
score editor, a voice editor and a powerful “performance” (or play-back}
system, all sharing the same data. Therefore, all drawing and editing
operations are available while the music plays. All the commands are
mouse driven. A menu command allows one to switch the drawing input
device from the mouse to the digitizer and vice versa.

A UPIC score is a collection ogf notes that are called “arcs.” An arc is a
pitch (frequency) versus time curve. The frequency variations are continu-
ous and can cover the whole ambitus. The durations can range from 6 ms
to the total duration of the musical page (1 hour maximum).

!CEMAMu (Centre for studies in mathematics and automation of music) , founded
by Iannis Xenakis in 1965 with grants from the French Cultural Ministry.

*This appendix is freely inspired by a similar paper published by ICMC in
Glasgow, 1990 in “Proceedings,” written by Gérard Marino, Jean-Michel Raczinski,
and Marie-Héléne Serra of CEMAMu. My gratitude for their faithful dedication is
herewith expressed. (I.X.)
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Tools are provided for obtaining quantified values of frequency and
duration. In this way, the notion of an arc is an extension of the classica]

notion of a note. In addition, each arc has a set of sound attributes that can

be changed real-time, during playback.

Voice editing on the UPIC includes redrawing and redefinition of

waveforms, envelopes, frequency and amplitude tables, modulating arc as-

signment, and modification of audio channel parameters (dynamic and en.
velope). All these operations are feasable during playback and immediately

heard.

Different sound interpretations of the same graphic score may be
tested with the help of arc groups. Groups contain from one arc to the

whole page and allow instantaneous and global modifications of sound par-
ameters (waveform change, transposition, etc.).

During performance, the musician can switch from one page to
another and may control the tempo and play position by moving the mouse
across the page. The resulting live interpretation may be recorded in an

editable object called a “sequence.” The tempo and the position in the

sequence is controllable while the sequence is being played.
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Figure 1. Sample screen from UPIC
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Page Drawing and Editing

A maximum of four pages of music can be opened and displayed in
moveable and resizeable windows. Opening a page stored on the disk loads
it into the memory of the real-time unit. Therefore, all the subsequent
operations can be carried out while the page is being played.

Arcs can be drawn by using one of the drawing modes (free hand,
broken line, etc.) If accepted, an arc is inserted in the page as soon as its
drawing is over; if the limit of 64 oscillators is reached, the arc will be re-
fused. At any time, it is possible to modify the set of the default attributes
(waveform, envelope, frequency table, amplitude table, weight, modulating
arc, audio channel). One page holds 2 maximum of 4000 arcs.

Usual editing commands (cut, copy, paste) are available. For each
page, four groups of any number of arcs can be created by using different
types of selection (block, list, criteria) Geometric operations like symmetry,
rotation and vertical alignment can be applied to a group. Instantaneous
modifications of the attributes (waveforms, envelope, frequency table,
amplitude table, weight, modulating arc, audio channel) of the arcs belong-
ing to a group can be temporarily applied and saved, if necessary. Further-
more, groups can be instantaneously muted, "solo-ed," and/or transposed.

Voice Edition

Each arc is associated with an oscillator whose configuration is given
by the following arc attributes: waveform, envelope, modulating arc, audio
channel. Before being transmitted to the oscillator, the graphic data of the
arc and of the envelope are converted respectively by a frequency table and
an amplitude table.

Waveforms and envelopes can be drawn or extracted from sampled
sound, and normalized.

The contents of the conversion tables are defined either by a drawing
or by a menu command and are redrawable.

The frequency table definition menu command enables the user to set
the boundaries of the ambitus (in hertz or half-tones) and the musical scale
parameters (tuning note and number of equal divisions in the octave). The
frequency table can be inverted and can be made continuous or discrete. In
the latter case, the steps are the octave divisions. When played with a dis-
crete frequency table, the pitch variations within the arcs follow the
frequency steps of the table.
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Performance

Only one page can be played at a time. The four pages maximum in
the window may be chained or not. The user chooses which page to play
simply by clicking on it, Stops or restarts the progression of the perform- b

ance, defines the time limits of the performance with optional looping.

The tempo and play position can be defined by mouse motions on the

page or by entering their values. All types of motions (forward, backward,

jumps, acceleration, slowing down) within the page are permitted. When ;.

not user-controlled, the page is played at a constant tempo.

A set of channel parameters (dynamic and envelope) is assigned to

each page. The dynamic and envelope of the 16 output audio channels are
real-time controllable during performance. As the channel envelope

spreads over the whole page, it is therefore possible to locally weight arcs

assigned to a given channel.

In the UPIC, a sequence is the recording, during the performance
(controlled or not) of all the successive positions in the page, with a 6 ms ac-
curacy. It holds a maximum of 12 minutes of performance. It is displayable
as a position versus time curve. Any piece of the sequence can be overwrit-
ten by a new recording or redrawn. The performance of a sequence is car-
ried out inside its window with mouse motion controls (like the page itself).
When four pages are loaded, the user has two sequences with which to
work.

Storage

Pages, waveforms, envelopes, conversion tables and sequences are
stored in separate banks (DOS files) on disk. Banks are user-protected.
Copying, renaming, and deletin g objects and banks is possible.

The user can load objects that come from different banks. Saving an
object can be done in any bank.

Conclusion

This summarizes the principal characteristics of the UPIC system
today. Additional commands are going to be integrated to the application,
especially sampling utilities (record, play, simple edition fuctions) The syn-
chronization of the performance with an external device as well as the com-
munication between UPIC and MIDI devices is presently being studied.
Tools will be provided to allow another application access the data of UPIC
banks.

The system is being industrialized and will be commercialized in the
course of 1991,
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TECHNICAL DESCRIPTION

A) Hardware Specifications

Host computer
PC-AT 386 with 3 Megabytes memory minimum, hard disk, mouse,
MIDI board, optional digitizer tablet. All Summagraphics compatible digi-
tizers are supported (size AO to A4).
Real-time synthesis unit
64 oscillators at 44.1 kHz with FM
(future extension to 128)
converter board:
4 audio output channels
2 audio input channels
AES/EBU interface
(extension to 4 converter boards)
capacity :
4 pages of 4000 arcs
64 waveforms (4K entries)
4 frequency tables (16K entries)
128 envelopes (4K entries)
4 amplitude tables (16K entries)
2 sequences (12 minutes each, 6 ms accuracy)

B) Software Main Features

Environment : DOS with Microsoft WINDOWS 3.x (graphical
multi-application environment with pull-down menus and pop-up
windows)

Storage : pages, waveforms, envelopes, frequency tables, amplitude
tables and sequences are stored in separate banks on disk. Banks are
user-protected.

Drawing : every object is initialized either by a command or by a
drawing, and is redrawable. Objects are displayed in overlapped, resizable
and zoomable windows.

Edition : several types of selection (block, list, criteria) allow the creation
of up to four groups of arcs per page. Each group can be muted, solo-ed,
graphically transformed and real-time controlled.

Sound :: See C (Real-time controls)
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C) Real-Time Controls

Page controls
Tempo
Play time interval (with or without looping)
Page switching
Position in the page
For each audio channel : dynamic, envelope
Sequence controls
Tempo
Position
Sequence switching
Group controls
Solo
Mute
Transposition
Intensity
Frequency modulation
Output channel
Waveform (among 64)
Frequency table (among 4)
Envelope (among 128)
Amplitude table (among 4)
Drawing while playing
While a page is being played, the user can modify its waveforms, en-
velopes and conversion tables. ,

A new arc can be heard as soon as its drawing is finished.

A'n existing arc can be redrawn within its endpoints and heard at the
same time,
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A Selected Bibliography of
Iannis Xenakis*

compiled by Henning Lohner

The bibliography of the works of Iannis Xenakis is arranged as fol-
lows:

1. Works by Xenakis:
1. Books, and

2. Articles in periodicals, booklets, and encyclopedias. In general, the
source of the first printing is given. The writings of Xenakis have been
translated and reprinted many times.

IT. Writings about Xenakis:
1. Monographs and collections, the majority of which are dedicated to
Xenakis, and

2. Articles in periodicals, encylopedias, and anthologies.

Works in daily and weekly newspapers, with some minor exceptions,
are not included here. That applies, in particular, to the numerous festival
catalogs and concert programs, which frequently have original material.
Likewise, record notes by or about Xenakis, record reviews and introduc-
tions to works by Xenakis are excluded.

It should be mentioned here that Xenakis, as an independent archi-
tect and long-time collaborator of Le Corbusier is responsible for an exten-
sive, architectural body of work, which is noted in the literature. We can, at
present, include only the most important, useful, interdisciplinary works.

The writings are organized chronologically, and, within each year, ar-
ranged alphabetically. Articles without a specific author are listed by the
initial letter of the title.

This bibliography is based on the private collection of the author, and
also utilizes other relevant bibliographies on the subject at hand.

The list of abbreviations can be found at the end, p. 364.

*First appeared in Musik Texte No. 13, Cologne 1986, in German, and later updated
in Musik/Konzepte 54/55.
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l. Primary Bibliography

1. Books by Xenakis

L. L: Collected Writings ;
“Les musiques formelles; nouveaux principes formels de composition
musicale.” Revue musicale 253-254, 1963; published also as:
Musiques formelles. Paris 1963; revised and expanded text in English
translation: Formalized Music. Bloomington and London, 1971.

Mousique. Architecture. Collection “Mutations— Orientations” Vol. 11, |

edited by M. Ragon, Tournai (Belgium) 1971; 2. expanded and re-
vised edition 1976.

1. 2.: Dissertations

Arts/Sciences—Alliages, thése de doctorat es lettres et sciences humaines 1976, i
Paris 1979; Aris/Sciences: Alloys, English edition, New York 1985,

2. Articles by Xenakis

1955 “Provlimata ellinikis moussikis.” Epitheorissi technis 9 (Athens 1955):
185-189.

i
“Le Couvent de Ia Tourette”, in: Modulor 2, by Le Corbusier, Paris
1955,

1956 “La crise de la musique sérielle.” Gravesaner Blitter 1 (July 1956): 2—4.

“Wahrscheinlichkeitstheorie und Musik.” Gravesaner Blitter 6 (1956): .
28-34. y

“Briefan Hermann Scherchen ” Gravesaner Blitter 6 (1 956) 35-36.

i |

1957 “Le Corbusiers ‘Elektronisches Gedicht'/Le Corbusier’s ‘Electronic
Poem.” Gravesaner Bliter/Gravesano Review 3, No. 9 (1957): hl
43fT./51fF, 1

“Le Couvent d’études de la Tourette, ceuvre de Le Corbusier,” Arnt 1
Chrétien No. 6, Paris 1957- 40-49.

1958 “Auf der Suche nach einer Stochastischen Musik/In Search of Stochas-
tic Music.” Gravesaner Blatter/Gravesano Review 3, No. 11-12 (1958):
98ff/112fT. d )

“De tre parablerna.” Nutida Musik 2 (1958-1959).

“Geneése de I'architecture du pavillon: le pavillon Phili ps a I'Exposition

universelle de Bruxelles 1958.” Revue technique Philips 20, No. 1
(1958): 10 p.

A Selective Bibliography—Writings 337

“Reflektioner over ‘Geste Electronique.”’ (“Notes sur un ‘Geste El-et:'—
tronique’” [in Swedish]). Nutida Musik 1, March 1958; French origi-
nal: Revue musicale 244 (1959) 25-30.

“Le Corbusier”, in: Architecture, Paris 1958,

“The Philips Pavilion and The Electronic Poem” (summary by
L.C.Kalff), Arts and Architecture 75, Nr.11 1958: 23.

1960-61  Grundlagen einer stochastischen Musik/Elements of Stochastic

1962

1963

1965

Music.” 4 Issues, Gravesaner Blitter/Gravesano Review 5-6, No. 18
(1960): 61fI/84ff;, No. 19-20 (1960): 1281f./140ft,; _Nf). 2.1 (1961)
102f£/113ff.; No. 22 (1961): 181ff/144ff; French original in part in
Revue d'esthétique 14, No. 3—4 (1961). “Herman Scherchen.” In Enzy-
clopédie de la Musique. Paris, 1961, p. 653.

“Vitruve.” In Enzyclopédie de la Musique.” Paris 1961, p. 873-874.

“Hermann Scherchen”, in: Enclopédie de la Musique, Paris 1961: 653.

“Stochastic music”, in: (Proceedings of the) Tokyo East-West music en-
counter, Tokyo 1961.

“The riddle of Japan”, in: This is Japan, Tokyo 1961.

“Debussy a sformalizowanie muzyki.” Ruch Muzyczny 6, No. 16 (1962):
7

“Eléments sur les procédés probabilistes (stochastiques) 'dc co.mposi-
tion musicale.” In Panorama de U'art musical contemporain. Edited by
C. Samuel. Paris 1962, p. 416-425.

“Un Cas; la musique stochastique.” Musica (Chaix) 102 (Sept. 1962):
11ff.

“Stochastische Musik/Stochastic Music.” Gravesaner Blitter/Gravesano
Review 6, No. 23-24, p. 156f/169ff.

“Wer ist Iannis Xenakis’Who is Iannis Xenakis.” Gravesaner Blit-
ter/Gravesano Review No. 23-24 (1962): 185/185-186.

“Musiques formelles.” Bulletin de souscription, Paris 1963, p. 1.

“Pierre Schaeffer.” In Die Musik in Geschichte und Gegenwart (MGG),
Vol. 11, Kassel 1963, p. 1535. German translation by M. Bente.

“Freie Aussprache (Diskussion): 1. Namrgetre.ue Musikwied.e_rgabe, IIL.
Mathematik, Elektronengehirn u. Musikalische Komp'osmm:u‘Open
Discussion: I. High Fidelity, II. Mathematics, Electronic Brains and
Musical Composition.” Gravesaner Blitter/Gravesano Review No. 26
(1965): 3-4/4-5.
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“Freie stochastische Musik durch den Elektronenrechner/Free Stoch-

astic Music from the Computer.” Gravesaner Blitter/Gravesano Review
7, No. 26 (1965): 541F./79fF. *

“La voie de la recherche et de la question.” Preuves 177 (Nov. 1965).

“Der Fall Le CorbusierfConcerning Le Corbusier.” Gravesaner Blii-
ter/Gravesano Review No. 27-28, p- 5-7/8-10.

“La Ville Cosmique.” In L'Urbanisme, utopies et réalitiés by F. Choay,
Paris 1965.

“Zu einer Philosophic der Music/Towards a Philosophy of Music.”
Gravesaner Blitter/Gravesano Review No. 29 (1965-1966): 23fF/38ff,

French original: “Vers un philosophie de la musique.” Revue desthé-
tique 21, No. 2—4 (1968): 173-210.

“Le Corbusier”, 4 ujourd’hui, Art et Architecture No. 51, 1965,

“Motsigelsen musik och maskin”, Nutida, Musik 9, No. 5-6: 23.

“The Origins of Stochastic Music.” (translated and expanded excerpt
from “Musiques formelles”), Tempo 78, p. 9-12.

“Structures hors-temps” The musics of Asia. Papers read at an inter-
national music symposium, Manila 1966: 152-173.

“Ad libitum.” WOM 9, No. 1 (1967): 17-19,

“Tannis Xenakis.” In Die Musik in Geschichte und Gegenwart (MGG) Vol.
14 (1967-1968): 923-924; translation by D. Schmidt-Preup.

“Musikalisk axiomatik och formalisering/Axiomatique et formalisation
de la composition musicale.” F ylkingen Bulletin International 2 (1967):
3p. ;

“Vers un métamusique.” Lg Nef 29 (1967): 24 p.

“La Musique et les ordinateurs.” Edited by A. Capelle. La Quinzaine lit-
teraire, 1 March 1968.

“Témoignage d’un créateur” (Interview), Pensée et création, Paris 1968:
78-83.

“Problemy mojej techniki kompozytorskiej.” In Horyzonty Muzyki 1,
Warsaw 1969,

“Structures universelles de la pensées musicale.” In Liberté et organisa-
tion dans le monde actuel, Paris 1969,

“Une note/E.m.a.mu.” Revue musicale 265-266 (1969): 8 p.
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1970

1972
1974

1975

1976

1977

“Short Answers to Difficult Questions.” Composer (USA) 2, No. 2
(1970): 39ff. 1971

“Den Komiska varldsstaden.” Nutida Musik 15, No. 3 (1971-1972): 13—
14.

“Les Dossiers de I'Equipe de Mathématique et Automatique Musicales
(EMAMu).” Cologuio Artes 13, No. 5 (1971): 40-48.

“Musique et programmation”, ITC (Ingénieurs, Techniciens et Cadres) Ac-
tualizes 2, 1970: 55-57.

“Om Terretektorh.” Nutida Musik 15, No. 2 (1971-1972): 47.
Preface to Lmnitiation musicale des jeunes by M. Gagnard, Paris 1971.

“Stravinsky and Tradition: First Thoughts.” In “Stravinsky (1882-
1971), A Composers Memorial.” PNM 9, No. 2 (1971): 130.

“Structures hors-temps.” In The Musics of Asia, Manila 1971, p. 152-
173.

“Une erreur fossile”, Pour vous que est Jesus Christ?, Paris 1970: 150.
“Formalized Music Abstract.” In RILM 6, No. 3 (1972): 266.

“New Proposals for Microsound Structure” (in Japanese). In Technology
kukan, Transonic 4, Autumn 1974, p. 4ff.

“Propos impromptus, suivis de reflexions en marge.” Edited by R.
Lyon. Courier musicale de France 48 (April 1974): 130-133.

(“Wissenschaftliches Denken und Musik—in Greek”). Theatro 8, No.
46-48 (1975): 14 p.
“The New Music Today.” In I'nter Nationes, Bonn 21/1975.

“Zur Situation”, Darmstidter Beitrige zur Neuen Musik, Bd.XIV, Mainz
1975: 16-18.

“Archaioteka kai sygchrone mousike, (antike Zeiten und zeitgen.
Musik—in Greek).” Bulletin of Critical Discography 18-19 (January
1976): 374-382.

“Culture et creativité.” Culture 3, No. 4 (1976): 4 p.

“Des Univers de Son.” In Problémes de la musique moderne, by B. de-
Schloezer and M. Scriabine. Paris 2/1977, p. 193-200.

“L’universo politico e sociale.” In Musica e politica, La Biennaledi
Venezia. Venice 1977, p. 548-549, translation by A. Cremonese.

“Musique et architecture.” Artcurial 5 (1977): 1 p.

“Nouvelles positions sur la micro-structure des sons”, Dossiers—Arts
Plastiques 1, Paris 1977.
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“Sur l'architecture au Japon” (in Jap.), Ikebana sogetsu No. 113, 1977.

1978 “Centre Georges Pompidou: Geste de lumiére et de son.” Le Diatope—

Xenakis, edited by I. Xenakis. Catalog: Paris 1978.

“Quelques systémes diversifiés en composition musicale”, Collogue de

St.Huberi—Le récit et sa représentation, Paris 1978.
1979 “Bela Bartok.” Arion (December 1979).

“Opening Address”, Proceedings of the 1978 International Computer Music “

Conference, Vol. 1, C. Roads, Evanston 1979,

“Si la société était un homme, ferait plusieurs métiers.” Entretien avec
Carine Lenfant. Architecture 7 (August-Sept. 1979).

1980 “Between Charybde et Scylla.” Spirali 11 (in Italian, December 1980);
Spirales 1 (in French, February 1981)

“Brief an Karl Amadeus Hartmann” (1956, in English). In Karl i

Amadeus Hartmann und die Musica Viva. Mainz 1980: 337.

“Migrazioni nella composizione musicale.” In Musica ¢ elaboratore, La
Biennale di Venezia. Venice 1980.

“Spaces and sources of auditions and spectacles”. (English summary,

M. Griech.), Proccedings of first meeling: enlargenment of theatrical activi-

ties and architectural practice, International scientific symposium, Volos
1980: 203-212

1981 “Dialexi.” In Symbossion: synchroni techni kai paradossi, convention re-
port. Athens 1981, p. 195ff,
“Homage to Béla Bart6k.” Tempo 136 (1981): 5.

“Il faut se que ¢a change!” In the series “I'TRCAM: un monopole con-
testé€ par des compositeurs.” Le Matin (26 January 1981).

“Le miroir du compositeur” (Interview), Spirales No. 7, 1981: 20-91.

“On the Nude Body” (statement). In Body Print, edited by M. Tanaka.
Japan 1981.

“Temps en Musique (Time in Music).” Conference given in New
York. Spirales (December 1981).
1982 “André Schaeffner.” Revue de musique 68 (1982): 387.

“Demain, les compositeurs seront tous des cervaux.” Edited by J. N.
Von der Weid. Monde de la Musique (Feb. 1982): 66-68.

“Il pensiero musicale”, Spirali No. 41, 19892: 44.45.

“La composition musicale est 2 la fois dépendente et indépendente de
I'évolution technologique des systémes analogiques ou numer-
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1983

1984

1985

iques.” Son et Image, Vidéo convention report. Porte Maillot, 1982.
Conference des Journées d’Etudes (1982). .

“Musica e originalitd”, Numero e suono, La B.ietmaije di Venfnr:z, 1982: 41-
42; published in French, “Musique et originalité, Phréatique No. 28,
Friihling 1984: 62-66.

“Polytopes”, Festival d’Automne Paris 1972-1982, Paris 1982: 218.

Préface to Informatique musicale et pédagogie, Les cahiers del'arm No. 4 (no
year, ca. 1981-1982): 3. :

“Science et technologie, instruments de création”, Colloque national: re-
cherche et technologie, Paris 1982.

“Il faut se débarrasser des prejuges architecturaux.” Les Nouvelles litter-
aires 23-29 (June 1983): 40-41.

“Perspectives de la musique contemporaine”, Echos, No. 1 1983: 47.

“Pour saluer Olivier Messiaen”, Opéra de Paris No. 12, 1983: 6.

“Il faut débarasser des préjugés architecturaux.” Nouvelles littéraires
(25-30 May). ]

“Musique et Originalité” in French and English, July-August, 1982 .
Phréatique 28 (1984). !

“The Monastery of La Tourette.” In Le Corbusier Vol. 28. Garland New
York, 1984. e !

“Notice sur la vie et les travaux de Georges Auric”, in: Discours pro-
noncés dans la séance publique tenue par l’Académie des Beaux-Arts No. 6,
Paris 1984: 13-19.

“Un exemple enviable.” Revue musicale 372-374 (1984): 67.

“Pour l'innovation culturelle”, in: Vous avez dit Fascisme?, by R.
Badinter, Paris 1984: 275-276.

“Un plaidoyer pour I'avant-garde?” Le Nouvel Observateur, 19-25 Oct.
1984: 97.

“Alban Berg; le dernier des Romantiques”, La vie culturelle, 7. 7. 1985:
29.

“Le pas d’acier de Paul Klee.” Le Nouvel Observateur (15-20 Novem-
ber).

“Les conditions actuelles de la composition” (Zusammengetragen v.]J.-
P. Bady), France Forum No. 223-224, 1985: 10-12. .

“Music Composition Treks.” In Composers and the Compuer, edited by
C. Roads. MIT Press, Cambridge, Mass, 1985; alre:ady wrl_tr,en 1983?,
ar.id in French translation by E. Gresset published in Musique et ordi-
nateur®. Les Ulis, 1983.
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“Voeux ique.” '
€n musique.” Harmonie/Panora

P- ma- Musique (January 1985), 1

1 986 “Avant-pmpc,s i

, in: H. Sc . y AU }
1118, herchen: La direction 4 orchestre, Paris 1986:

“B?iefauszug an Hermann Scherchen”
: in: Herrmann Scherchen Musiker, Berlin 1986- 95,
Espace musical, es

oo pace scientifique.” Le Courrier UNESCO 1. Paris,

“Hf:rmann Scherchen”, Le Monde de la Musique 89, Mai 1986- 91
Microsystemes”, June 1986 e
“Originality in Music and Co

o mposition.” Fukushima Symposium. Tokyo,

1 " ” »
988 “Sul tempo.” In Xenakis, a cura de Enzo Restagno. Torino, 1988
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35. E

vy M. Couraud, dir.
g Pludemacher, pf. 45. Erato STU 70526 (also 9088)

86. EMI CVC-2086 (also MC Medea, Polytope de Montréal,
. MCV-2086¢) e

; : Ensemble Ars Nova; Chorus of
jﬁrfs’ ﬁ";f,’j;‘"’“"’*”‘"”"""’ i ORTF; M. Constant, dir.
'pha,

P. Penassou, vcl, ; Quatuor 46. Erato STU 70527/28 *
Bernéde; Ensemble Instru- Kraanerg ,
mental de musique contem- M. Constant, dir.
poraine de Paris; K. 47. Erato STU 70529 (also 91 19)
Simonovich, dir. Nomos Gamma, Terretektorh
37. EMI Columbia SCXG-55 * ORTF Philharmonic Orchestra;
' ST/10 Ch. Bruck, dir.
Th. Antoniou, dir. 48. Erato STU 70530
38. EMI HMV CSDG-63 * Bohor, Concret PH, Diamorphoses,
. Anaktoria Orient-Occident ”
Th. Antoniou, dir. (electronic composition)
39. Elektrola (Hor Zu) 49. Erato STU 70656 (also 9137)
t PH, Medea, Orient-Occident Oreste':a _
(?l:':f'onic composition) S. Caillat Chorale ; Maitrise de

Notre-Dame de Paris; En-
i ;: ?’i!m § 22‘:5 O;Z;iSD semble Ars Nova; M. Con-
e de Gorée,

stant, dir.
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50. Erato STU 71106 * 57. Finlandia 120 366.2 CD *

66. Limelight 86047 * 77. Nonesuch 32818 (also H-71201) *

g’scg.‘?pkfd Anaktoria
- Gualda, pere. Members of the Avanti Chamber

51. Erato STU 71266 * Orchestra
Khoai ; 58. Finlandia FACD 3857 *
E. Chojnacka, clav. Khoai

52. Erato STU 71518 J. Tiensu, clav.
Cendrées, _jonchaies, Nf)mos Gamma 59. Gaudeamus Foundation - Radio
Gu]berfklan Foundation Chorus Netherland (3 CD 1988)
of Lisbon; Orchestre National Gmeeoorh i
de France; M, Tabachnik, dir.; K. Hoek, Organ

ORTF Philharmonic Or- o
chestra; Ch. Bvuck dic. 60. Gramavision R2 79440 CD *

i Tetras
| Era}t;z hlltftrf;ce;;ggr Arditti Strin g Quartet
wiett-Pac
% ) 61. HMV S-ASD 9441

Morsima-A morsima, Nomos Alpha,

ST/4

P Penassou, vcl.; Quatuor

S BundBink dir Bernéde; Enscfnble Instru-
Michel Tabachnik; mental de musique contem.-

i poraine de Paris; K.

Simonovich, dir.

Spyros Sakkas, baritone ; Sylvio
Gualda, percussion; Sym-
phonieorchester des Bay-

Kélner Rundfun'k-Symphonieor- :
chester: Kélner Rundfunchor, 62. He_xrmoma Mundi HMC 5172 *

dir. Michel Tabachnik. Mists

N’shima. C. Helffer, pf.

Anne Bartolloni, Geneviéve 63. Harmonia Mundj HMC 905185
Renon, mezzo-sopranos; En- CD
semble Instrumentale, dir. Mi- Pléiades

chel Tabachnik.
54. Ernst Klett 92499 *

Les Percussions de Strasbourg
64. Hungaroton 12569 (also CD

Diamorphoses HCD 12569) *
(electronic composition) Mists
55. Etcetera KTC 1075 * K. Kérmendi, pf.
Kmanberg 65. Jeugden Muziek BVHAAST 007
Alpha Centauri Ens., R. Wood. Eonta, Evryali, Herma
ward, dir. G. Madge, pf. P. Eétvas, dir,
56. Eterna Stereo 827906 *
Dmaathen

Ornient-Occident
(electronic composition)

67. Lyra 251

Eonta, Metastasis, Pithoprakia

Y. Takahashi, pf.; Ensemble In-
strumental de musique con-
temporaine de Paris; K.
Simonovich, dir.

68. Mainstream 5000 *
Herma
Y. Takahashi, pf.

69. Mainstream MS-5008 *
Achorripsis
Hamburger Kammersolisten; F.

Travis, dir.

70. Musical Society MHS 1187 *
Medea, Nuits
Ensemble Ars Nova; ORTF

Chorus; M. Couraud, dir.

71. Musical observations CP 2/6 *
Mikka, Mikka S
P. Zukovsky, vl.

72. Musidisc RC-16013
Anaktoria, Morsima-Amorsima
Octuor de Paris

73. Neuma 450-71 *

Theraps
R. Black, Cb.

74 Neuma 450-74 CD *
Mycéne A
(electronic composition)

75. Nieuwe Muziek 004
Dmaathen, Epei, Palimpsest,
Phlegra
Xenakis Ensemble; H. Kerstens,

dir.

76. Nippon SFX-8683 *
Persépolis
(electronic composition)

Akrata, Pithoprakta
Buffalo Philharmonic Orchestra;
Lukas Foss, dir.
78. Nonesuch H-71245
Bohor, Concet PH, Diamorphoses,
Orient-Occident
(electronic composition)
79. Owl 26 *
Charisma
Jungerman, cl.; Banks, vcl.
80. Performance PER 84061 *
Jonchaies
Leicestershire Schools Sym-
phony Orchestra; P. Fletcher,
dir.
81. Philips 6521020 (also 6718040) *
Persephassa
Les Percussions de Strasbourg

82. Philips 835485/86 (also A
00565/66 L, 836897 DSY) *
Orient-Occident
(electronic composition)
83. Philips 835487
Analogique A et B, Concret PH
Ensemble Instrumental de
musique contemporaine de
Paris; K. Simonovich, dir.

84. Philips T 6521045
Persépolis
(electronic composition)

85. PNM (Perspectives of New
Music) 28 CD
Voyage absolu des Unaris vers
Androméde
(electronic composition com-
posed on UPIC at CEMAMu)

86. RCA RS 9009 (also RE 25444)
Dikhthas, Embellie, Ikhoor, Kotlos,
Mikka, Mikka S, ST/4
Arditti Quartet
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87. RCA.\{ictor_]RZ—EZfJOl * 93. Vanguard Cardinal 10030
Hibiki ;‘Ham Ma Eonta, Metastasis, Pithoprakta
(electronic composition) Y. Takahashi, Pf; Enseinble In-
88. RCA Victor SJV-1518 * strumental de musique con-

Stratégie temporaine de Paris, K.

Yomiuri Nippon Symphony Or- Simonovich, dir.
chestra; S. Ozawa and H. 94. Varése Sarabande 81060 *
Wakasugi, dirs. Stmtégz‘e

Yomiuri Nippon Symphony Or-
89. Salabert Actuels SCD 8906 Cp chestra; S. Ozawa and H.

(dist. Harmonium Mundi) Wakasugi, dirs.

Oresteia, Kassandra 95. Wergo WER 6178-2 CD

U. of Strasbourg Chorus; Akanthos, Dikhthas, Pafimpsesz, Epei
Maitrise de Colmar; Anjou L. Arditti, vin; C. Helffer, pno; P.
Vocal Ensemble; Ensemble de Wal msey-Clark, sop; Spec~,
Basse-Normandie; D. Debart, trum Ensemble; G, Protheroe
dir; R. Weddle, Vocal dir; S. dir. ,
Sakkos, bar; S. Gualda, perec.

Sony CBS SONC-10163 In Preparation:

Akrata 96. Disques Montaigtne 789xxx 3 CD

The Festival Chamber Ep. Evryali, Mists, H, erma, Dikhthas,
semble; R. Dufallo, dir. Akea, Tetras, ST/4, Mikka, Mikkq

90. Teldec 6.42339 AG (also CD 3", Kottos, Nomos lpha, Ithoor,

8.42339 ZK) * Eosbailis
Retaum-Windungm C. Helffer, pno; Arditti String
The 12 cellists from the Berlin Quartet
Philharmonic. 97. MFA (collection Musique
91. Telec/Warner Classics 9299 Francais d' Aujourdhui)
46442-2 CD * Charisma
Eonites A., Damiens, cl; P. Strauch, vlc.

R. Hind, pno; London Brass 98. Salabert Actuels SCD 9102 CD
: (dist. Harmonium Mundj
92. Toshiba TA-72084 * Bohor, La Légende D’Eer i

Evryali (electronic compositi
A. Takahashi, pf. i
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Iannis Xenakis
Biographical Information

1957: Geneva, European Cultural Foundation Award
1963: Athens, Manos Hadjidakis Award
1963-64: Berlin, Ford Foundation Grant plus Grant from the West-Berlin

Senate
1964: Paris, Musiques Formelles chosen by the Permanent Committee of the
French Book and Graphic Arts Exhibits, to be one of the 50 “Books

of the Year.”
1965: Paris, Grand Prize awarded by the French Recording Academy Com-
petition.
1968: Edinburgh, First Prize at the Computer-assisted Music Competition,
IFIP Congress
:Paris, Grand Prize awarded by the French Recording Academy
:London, Bax Society Prize (Harriet Cohen International Music
Awards)
1970 Paris Grand Prize awarded by the French Recording Academy
1971: Tokyo Modern Music Award from the Nippon Academy Awards
1972: London, Honorary Member of the British Computer Arts Society
1974: Paris, Gold Medal Maurice Ravel Award from the SACEM
1975: Honorary Member of the American Academy of Arts and Letters
1976: Paris, Sorbonne, Doctorat és Letters and Humanities
:Paris, National Grand Prize in Music from the French Cultural
Secretary of State
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1977: Paris, Grand Prize, Charles Cros Academy for Recordings (Grand Prix
du Président de la République in honorem) '

:Bonn, Beethoven Prize
:Amste?dam, Edison Award for the best recording of contemporary
music
1981: Paris, Officier de 'Ordre des Arts et des Lettres
1982: Paris, Chevalier de la Légion d Honneur
1983: Paris, Member of the Institut de France (Académie des Beaux Arts)
:Berlin and Munich, Member of the Akademie der Kunste
1985: Paris, Officier de I'Ordre National du Mérite
: Athens, Medal of Honor of the City
1986: Paris, Ordre National du Mérite
1987: Honorary Member of the Scottish Society of Composers
:Grand Prize from the City of Paris
1988: Paris, Nominated to the Victoires de la Musique
1989: Foreign member of the Swedish Royal Academy of Music
1990: Professor Emeritus of the Université de Paris I, Panthéon-Sorbonne
:Honorary Doctor of the University of Edinburgh
:Honorary Doctor of the University of Glasglow

Notes

. Free Stochastic Musié

1. Jean Piaget, Le développement de la notion de temps chez enfant (Paris:
Presses Universitaires de France, 1946).

2. 1. Xenakis, Gravesaner Blitter, no. 1 (1955).

3. 1. Xenakis, Revue techmique Philips, vol. 20, no. 1 (1958), and Le
Corbusier, Modulor 2 (Boulogne-Seine: Architecture d’Aujourd’hui, 1955).

4. 1. Xenakis, “Wahrscheinlichkeitstheorie und Musik,” Gravesaner
Blatter, no. 6 (1956).

5. Ibid.

6. Ibid.

Il. Markovian Stochastic Music—Theory

1. The description of the elementary structure of the sonic symbols that
is given here serves as a point of departure for the musical realization, and
is consequently only a hypothesis, rather than an established scientific fact.
It can, nevertheless, be considered as a first approximation to the considera-
tions introduced in information theory by Gabor [1]. In the so-called Gabor
matrix a sonic event is resolved into elementary acoustic signals of very
short effective durations, whose amplitude can be divided equally into
quanta in the sense of information theory. However, these elementary
signals constitute sinusoidal functions having a Gaussian “bell” curve as
an envelope. But one can pretty well represent these signals of Gabor’s by
sine waves of short duration with an approximately rectangular envelope.

2. The choice of the logarithmic scale and of the base between 2 and 3
is made in order to establish our ideas. In any case, it corresponds to the
results of research in experimental music made by the author, e.g.,
Diamorphoses.
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V. Free Stochastic Music by Computer

1. See Gravesaner Blittter, nos. 11/12 (Mainz: Ars Viva Verlag, 1957).

2. (VS)eR must be equal to the upper limit, €.8., to 150 sounds/sec. in the
case of a large orchestra,

VI. Symbolic Music

1. A second-degree acoustic and musical experience makes it necessary
to abandon the Fourier analysis, and therefore the predominance of

frequency in sound construction. But this problem will be treated in Chapter
IX.

2. From previous edition of Formalized Music, another way to map these
same four forms:

B —

- SRR

Z=x+yi
f.'[

=Z=x+yi=Z= f,(Z) = original form
X-yi=|Z|¥Z= f,(Z) = inversion

N
]

ofh
li

X-yi=-Z={f(Z) = inverted retrogradation

fi=x+yi= |Z|¥ Z) = £,(Z) = retrogradation

Notes 5

VIl. Towards a Metamusic

1. Cf I. Xenakis, Gravesaner Blatter, no. 29 (Gravesano, Tessin,
Switzerland, 1965).

2. Cf. I. Xenakis, Gravesener Blitter, nos. 1, 6; the scores of Metastasis and
Pithoprakta (London: Boosey and Hawkes, 1954 and 1956); and the recording
by Le Chant du Monde, L.D.X. A-8368 or Vanguard.

3. I do not mention here the fact that some present-day music uses
quarter-tones or sixth-tones because they really do not escape from the tonal
diatonic field.

4. Cf. Chap. VI

5. Johannis Tinctoris, Terminorum Musicae Diffinitorum (Paris:
Richard-Masse, 1951 ).

6. Jacques Chailley, “Le mythe des modes grecs,” Acta Musicologica, vol.
XXVIII, fasc. IV (Basel Biren reitcr-VerIag, 1956).

7. R. Westphal, Aristoxenos von Tarent, Melik und Rhythmik (Leipzig:
Verlag von Ambr. Abel (Arthur Meiner), 1893), introduction in German,
Greek text.

8. G. Th. Guilbaud, Maahémaziques, Tome I (Paris: Presses Universitaires
de France, 1963).

9. Aristidou Kointiliano , Peri Mousikes Proton (Leipzig: Teubner, 1963),
at Librairie des Méridiens, Paris.

10. The Aristoxenean scale seems to be one of the experimental
versions of the ancient diatonic, but does not conform to the theoretical
versions of either the Pythagoreans or the Aristoxeneans, X(9/8)(9/8) = 4/3
and 6 + 12 + 12 = 30 segments, respectively. Archytas’ version, X(7/8) (9/8)
= 4/8, or Euclid’s are significant. On the other hand, the so-called Zarlino
scale is nothing but the so-called Aristoxenean scale, which, in reality, only
dates back to Ptolemy and Didymos.

11. Avraam Evthymiadis Zroiyewhdn Mebijpara Bvlovrwis Movaikis
(Thessaloniki: O.X A, Apostoliki Diakonia, 1948).

12. In Quintilian and Ptolemy the perfect fourth was divided into 60
equal tempered segments.

13. See Westphal, pp. XLVIIfT. for the displacement of the tetrachord
mentioned by Ptolemy: lichanos (16/15) mese (9/8) paramese (10/9) trite
(Harmonics 2.1, p. 49).
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14. In Ptolemy the names of the chromatic tetrachords were permuted:

the soft chromatic contained the interval 6/9, the hard or syntonon the

iuterval 7/6. Cf, Westphal, p- XXXII.

15. Selidion 1 : a mixture of the syntonon chromatic (22/21, 12/1 1, 7/6)
and toniaion diatonic (28/27, 7/8, 9/8) ; selidion 2 : a mixture of the soft
diatonic (21/20, 10/9, 8/7) and the toniaion diatonic (28/27, 8/7, 9/8), etc.
Westphal, p. XLVIIL

16. Egon Wellesz, 4 History of Byzantine Music and Hymnography (Oxford:
Clarendon Press, 1961), pp. 71ff. On P: 70 he again takes up the myth that
the ancient scales descended.

17. The same negligence can be found among the students of ancient
Hellenic culture; for example, the classic Touis Laloy in Aristoxéne de Tarente,
1904, p. 249,

18. Alain Daniélou lived in India for many years and learned to play
Indian instruments. Mantle Hood did the same with Indonesian music, and
let us not forget Than Van Khé, theoretician and practicing performer and
composer of traditional Vietnamese music.

Cf. Wellesz. Also the transcriptions by C. Hoeg, another great
Byzantinist who neglected the problems of structure.

20. Imagine the bewilderment of the “specialists” when they discovered
that the Byzantine musical notation is used today in traditional Romanian
folk music! Rapports Complémentaires du XITe Congreés international des Etudes
byzantines, Ochrida, Yugoslavia, 1961, P- 76. These experts without doubt
ignore the fact that an identical phenomenon exists in Greece.,

21. Cf. my text on disc L.D.X. A-8368, issued by Le Chant du Monde.
See also Gravesaner Bliitter, no. 29, and Chap. VI of the present book.

22. Among themselves the elementary displacements are like the
integers, that is, they are defined like elements of the same axiomatics.

23. Alain Daniélou, Northern Indian Music (Barnet, Hertfordshire:
Halcyon Press, 1954), vol. 11, p.72.

24, This perhaps fulfills Edward Varése’s wish for a spiral scale, that is, a
cycle of fifths which would not lead to a perfect octave. This information,
unfortunatcly abridged, was given me by Odile Vivier.

25. These last structures were used in Akrata (1 964) for sixteen winds,
and in Nomos alpha (1965) for solo cello.
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Notes

VIIl. Towards a Philosophy of Music

1. The “unveiling of the historical tradition” _is used ht?re in E. I;[Iusserl’s

ense; cf. Husserliana, VI. “Die Krisis der Eum]?ﬁlschen_WI?senscha_ en u(;li
:iie transzendentale  Phidnomenologie (Eine Emleltun-gM mN A f;
phénomenologische Philosophie)”, Pure Geometry (The Hague: M. Nijhoff,
1954), pp- 21-25, and Appendix III, pp. 379—?0. G

2. Cf. Upanishads and Bhage di Gita, refcrem:t?s by ﬁaﬁiba -
Coomaraswamy in Hinduism and Buddhism (New York: Philosophical Library,
o i is i turn to

3. “Perhaps the oddest thing abou.t modern science is its re
pythagoricism.” Bertrand Russell, The Nation, 27 September 1924.

4. In this translation I have considered th.e original Greek tc'x]tvI anc_ldfhe
translations by John Burnet in Early Greek Philosophy (Ne“f York._ ’t;:)nU 1:;11
Books, 1962) and by Jean Beaufret in Le Poéme de Parménide (Paris: P.U.F.,
1955)'1. Elements are always real: (earth, water, air) = (Enatter, fire) =
energy. Their equivalence had ready been foreseen l?y Heraclitus.

6. Lucretius, De la Nature, trans. A. Ernout (Paris, 1924). b

7. The term stochastic is used for the first time in this work. Today it is

i obability, aleatory, chance.

synon:.m l;).u;:‘j,p;lémmtyde la ﬂsé?;w des probabilités (Paris: Albin Michel,

1950);3 .pianQc.ertainty, measured by the entropy of information theory, reaches

a maximum when the probabilities p and (1 - p) are equal.

10. Cf. 1. Xenakis, Gravesaner Bliiter, nos. 1, 6, 11/12 (1955-8). g
11. I prepared a new interpretation ({f Mes_.swcn’s “m_ode_s olfgg;m;eti
transpositions,” which was to have been published in a collection in , bu
i t yet appeared. .

WhIChll:sAlzufld 15’1;0 A. de Bertha created his “gamnr.lcs homotones premiére _et

seconde,” scales of alternating whole and half tones, which would be written in

our notation as (3, V 34 +2,3. V 3. +1).

13. In 1895, Loquin, professor at the Bordeaux Conservatory, had
already preconceived the equality of the twelve tones of th-e octave.

14. The following is a new axiomatization of the sieves, more natural
than the one in Chaps. VI and VII.
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Basic Assumptions. 1. The sensations create discrete charécteristics, values,
stops (pitches, instants, intensities, . . .), which can be represented as points. 2.
Sensations plus comparisons of them create differences between the above
characteristics or points, which can be described as the movement, the
displacement, or the step from one discrete characteristic to another, from
one point to another. 3. We are able to repeat, iterate, concatenate the above
steps. 4. There are two orientations in the iterations—more iterations, fewer
iterations.

Formalization. Sets. The basic assumptions above engender three
fundamental sets : Q, A, E respectively. From the first assumption
characteristics will belong to various specific domains Q. From the second,
displacements or steps in a specific domain Q will belong to set A, which is
independent of Q. From the third, concatenations or iterations of elements of

represented by + and —,

Product Sets. a. Q x A i 00G; pitch-point combined with a
displacement produces a pitch-point). b. Q x E C A (a displacement
combined with an iteration or a concatenation produces a displacement). We
can easily identifty E as the set N of natural numbers plus zero. Moreover, the
fourth basic assumption leads directly to the definition of the set of integers Z
from E.

We have thus bypassed the direct use of Peano axiomatics (introduced
in Chaps. VI aud VII) in order to generate an Equally Tempered Chromatic

A (set of melodic intervals, e._g.), on the other hand, has a group structure,

15. Cf. Olivier Messiaen, Technique de mon langage musical (Paris:
Durand, 1944).

-1 =t = ol B X0 IR 1 08 i il . i 3s
A.BEC P pF AS e R T f
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C scale Figure 2.
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16. “ . . therefore tones higher than needed become relaxed [lower], as
they should be, by curtailment of movement; conversely those.lowe.r that;
needed become tensed [higher], as they should be, by ad‘]un’ctmn o
movement. This is why it is necessary to say that tones are constituted of
discrete pieces, since it is by adjunction and curtajlmf:nt that the)f become as
they should be. All things composed of discrete pieces are said to be in
numerical ratio to each other. Therefore we must say that tones are also in
numerical ratio to each other. But among numbers, some are.sald to be lfl
multiplicative ratio, others in an epimorios [1 + 1/x], or others in an epzw
ratio [an integer plus a fraction having a nutflerator other t.hfan one] ;
therefore it is necessary to say that tones are also in these same ratios to each
other. . .” Euclid, Katatomé Kanonos (12-24), in Henricus Menge, Phaenomena
et Scripta Musica (Leipzig: B. G. Teubner, 1916). This remarkable text alread()i/
attempts to establish axiomatically the correspondt?nce .betwecn tones an
numbers. This is why I bring it in in the context of this amclti:.

17. Cf my analysis of Metastasis, in Corbusier, Modulor 2
(Boulogne-Seine: Architecture d’Aujourd’hui, 1955.) .

18. Cf. Score by Boosey and Hawkes, eds., and record by Pathé-Marconi
and Angel. 3

19. Hibiki-Hana-Ma, the electro-acoustic composm(.n:x that 1 was
commissioned to write for the Japanese Steel Federatior.l Pawho'n at the. 1970
Osaka World Expo, used 800 loudspeakers, scatter?d in the air and in the
ground. They were divided into approximately 150 1f1depende.nt grctups.Th:e
sounds were designed to traverse these groups according to vanou:v. h“?maﬂt:c
diagrams. After the Philips Pavilion at the 1958 Bruss.els World’s -F&II‘, e
Steel Pavilion was the most advanced attempt at placing sound.s in space.
However, only twelve independent magnetic tracks were available (two
synchronized six-track tape recorders). . iy

20. Mario Bois, Iannis Xenakis: The Man and His Music (New York:
Boosey and Hawkes, 1967). ;

21. Jean Piaget, Le développement de la notion de ten:tps ch:ez _E enfant, and La
représentation de Uespace chez U'enfant (Paris. Presses Universitaires de France,
1946 and 1948).
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X. Concerning Time, Space and Music

1. Shannon C. and Weaver W.,The Mathematical ]"heory of Communication
(Urbana: University of Illinois Press, 1949). ;

2 Eddington, The Nature of the Physical World (New York: Macmillan,
1929).

3. Prigogine, 1., Physique Temps et Devenir (Paris: Masson, 1982).

4. Born, Max, Einstein’s Themy of Reiatiw'ty (New York: Dover, 1965).

5. Morrison, Philip, “The Overthrow of Parity,” Scientific American,
April, 1957.

6. Gardner, Martin, “Can Time Go Backward,” Scientific American, Jan.
1967, p.98.

7. Reichenbach, H., The Philosphy of Space and Time (New York: Dover,
1958).

8. Linde, A. D., Physics Letters (1983), 129B, 177.

9. See also Coveney, Peter V.,“The Second Law of T'hermodynamics:
Entropy, Irreversibility and Dynamics,” Nature N° 333 (1988).

10. The idea of the Big Bang, a consequence of the shift (expansion of
the universe) toward the red, is not accepted by all physicists. See Nikias
Stravroulakis, “Solitons et propagation d’actions suivant la relativité
générale,” Annales de la Fondation de Broglie 12 N° 4 (1987).

L1. Russell, B, Introduction a la philosophie mathématique (Paris: Payot,
1961).

12. Cf. chapter 9 in Formalized Music, “New Proposals in Microsound
Structure.”

13. Cf. Xenakis, autori vari (a cura di Enzo Restagno) (Torino: E.D.T.,
1988).

XI. Sieves

1. Earlier articles on “sieves” by Iannis Xenakis have appeared in
Preuves, Nov. 1965, Paris; La Nef n° 29, 1967, Paris; Revue d’Esthétique vol.
xxi, 1968, Paris; Tempo no 93, 1970, as well as the previous editions of
Formalized Music.

2. As for rhythm outside of Western civilization, cf. AROM, Simha, “Du
pied 4 la main: Les fondements métriques des musiques traditionelles

d’Afrique Centrale;” Analyse Musicale 1° trimestre, 1988.
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Notes
3. Let there be (M, I), with M being a composite of the form:

M=mk*nl. . *d .
It is sometimes necessary and possible to decompose it into :
@ Im)N @) N ... 0% ) = M, D).

4. Euclid’s algorithm. Let y, x be two positive whole numl_)ers. Begin by
letting D = MOD(y,x), then replace y with x and x wi!'_h D. If D is not equal to
0, then start over. But if D = 0, then the last is the largest common
denominator. Let us call this last y, D.
take two numbers : y, x

1) D « MOD(y, x)

2) y<Xxx+<D
3) yes-@—no
END
example :
y=30,x=21
D «— MOD(30,21) = 9 D «— MOD(21,9) = 3 D «~MOD(9,3) =0
y =21, x«9 y«9,x<3 y«<3,x<0
D<«9=0 D«<3=0 D«<0=0
therefore
Dey=3
END

5. a modulo b, notated MOD(a, b), is equal to the residue of the division
ofabyb:a/b = e + r/b where r is this residue, if a, b, €, and r are elements
of N. j :

6. MOD( * C2, C1) = 1 represents the integer equation:

EXC2/C1 =v+1/Cl.




Index

Achorripsis, 24, 26-38, 131, 13343,
295

Alypios, 185

Analogique A, 79, 98-103, 105, 109.
See also Markov chain

Analogique B, xiv, xv (illustrations),
79, 103-9. See Markov chain

Anaxagoras, 203

Anaximander, 201

Anaximenes, 201

Arc sine function. See Probability
laws

“Arcs,” 329-34; (definition), 329
Aristotle, 181
Aristoxenas of Tarent, 269

Aristoxenos, 183-9, 195, 202, 208,
210

Ataxy, 63, 75-78
Atrées, 136-37, 144

Bachet de Meziriac, 272
Barbaud, P., 133

Barraud, Jacques, 131, 134
Beethoven, 1, 164, 169
Bernoulli, Daniel, 205
Bernoulli, Jacques, 206

Bessel function, 247

Big Bang theory, 259, 260, 295
Blanchard, P., 133

Boltzmann, 15, 255, 257;
theorem, 61

Boolean operations, 209
Borel, Emile, 39, 206
Boudouris, Georges, 133
Brout, R, 260

Brownian movement, 289
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Cauchy, 266, 290, 293

Cauchy function. See Probability
laws

Causality, 257, 258, 259: principle,
1,4, 89

Chailley, Jacques, 183

CEMAMu (Center for Studies in
Mathematics and Automation of
Music), xii, xiii, 329

Chance, 4, 38-39, 259; definition, 25

Channels (in computing), 329-34

Charbonnier, Jeanine, 133

Combarieu, 183

Computers, 258, 266, 268, 329-34:
hardware, 333-34 software. 333-
34; See also Stochastic music

Concret PH, 43
Covency, Peter V., 260

Debussy, 5, 193, 208 ; Debussian
whole-tone scale, 196
Delayed choice”, 257

Descartes, 263: discourse on
method, 54

Determinism, 204-5

Diamorphoses, 43

Didymos, 186

Distribution, random-like, 265
Duel, 13-22, 124. See Game theory

Eddington, 255
Einstein, 256, 263
Englert, F., 260

Entropy, 16, 61-68, 75-78, 211, 255,
256, 257; definition, 61, 186;
mean entropy, 75

Envelopes (in computing), 329-34
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Epicurus, 24, 205-6, 237

Ergodism, 56, 67

Exponential probability function.
See Probability laws

Fermat, 206
Feynman, 257

Fletcher-Munson diagram, 47-49
243

Flux, 266

Fourier, 258, 266, 293: series, 242
Fractals, sounding, 266, 293

Fréchet, Maurice, 79

French Cultural Ministry, 329fn
Frequency and amplitude tables, 329
Fulchignoni, E., 43

’

Gabor elementary signals, 54, 58,
103

Game Lheory, 10,133 ; analysis of
Duel, 13-22 ; analysis of Stratégie,
122-23, 125-30; autonomous
music, 110-11 ; heteronomous
music, 111-13 ; two-person zero-
sum, 112;

Gauss, 266

Gaussian probability distribution.
See Probability laws

Genuys, Frangois, 131, 134

Glissando, See Sound

Graphic score editing, 329

Gregorian chant, 183

Groups, 210 ; Abelian additive

ﬁ;oup structure, 160, 199 ; Klein
0

Guth, Alan, 259
Guttman. N., 133
Giinzig, E., 260

Heisenberg, 206 n., 237
Henry, Pierre, 243
Heraclitus, 267
Herakleitos, 202, 259
Herma, 175-77

Index

Heteronomy. See Game theory
Hibiki-Hana-Ma, 269, n.1
Hiller, 133 '
Hindemith, 243

Hucbald, 183, 202

Hyperbolic cosine function. See
Probability laws

Interactive compaosition, 329-34
Isaacson, 133
Isotropy, 14

Kinetic theory of gases, 15, 49, 95
205, 213, 244

Knowledge, 261
Korybantes, 202
Kratylos, 259

£l

La Légende d’Eer, xii, 293, 296
Lamb’s shift”, definition, 259
Landmark points, 264, 265
Law, definition, 258

Law of large numbers, 4, 8, 16, 31,
206

Laws, 267

Le Corbusier, 10

Lee, T. D., 256

Leukippos, 203

Light, velocity of, 256

Linde, 259

Linear probability function. See
Probability laws

Liouville, equation of, 256

Logic, 276

Logistic function. See Probability
laws

Logistic probabilities, 266

Lorenz-Fizgerald, 256

Lucretius, 205

Lévy, Paul, 15, 24

Macrocomposition, 22 ; methods,

49. See microsound structure

Index

Macroscopic complosition, 256
Markov chain, 73-75. 133, 244, 248-
49; analysis of compositional ap-
proach, 79-98; entropy of, 86;
matrix of transition probabilities,
74-75, 78, 82-4, 109; realizatiou of
Analogique A, 98-103; realization of
Anatogique B, 103-8; stationary dis-
tribution, 75, 85; use of screens,
79-109
Marino, Gérard, 277, $29m
Marsima-Amorsima, 144
Mathews, M. V., 133, 246n.
Matrix of transition probabilities.
See Markov chain
Maxwell, 15 ; formula, 55
Memory, 258, 262, 264, 266
Messiaen, Olivier, 5, 8, 192, 208,
210, 268
Metastais, 2-3, 10
Meyer-Eppler’s studies, 244
Microcomposition, 22-23, 50. See
Microsound structure
Microsound structure, 242-54; mi-
crocomposition based on prob-
ability distributions, 24-9;
macrocomposition, 249. See Pour-
ier series
MIDI devices, 332
Modulating arc assignment, 329
Moduli, 267
Monteverdi, 208
Moussorgsky, 208
Music, definition and historical back-
ground, 1, 4-5, 8; ancient Greek,
182-85, 192; atonal, 4; Byzantine,
182, 186-92, 208; electronic, 8, 52,
243; electro-acoustic, 243; electro-
magnetic, 8, 16, 43, 103. See
Stochastic music, Serial music,
Game theory

Nomos alpha, 208-9, 219-36

Nomos gamma, 217, 219, 236-41
Non-linear functions, 295
Nothingness, 259, 260, 261, 267, 295
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Orient-Occident, 43
Originality, 258
Orphism, 201-2

Parity symmetry, 256
Parmenides, 24 n., 202-4, 207, 209,
259, 260, 262, 263, 267
Pascal, 206
Peano, 159 n., 194-95, 265
“Performance” system, 329
Periodicities, 268
Philippot, Michel, 39-42 ; Composition
pour double orchestre, 39
Philips Pavilion, 6-7, 10- 11, 43
Piaget, Jean, 5, 160
Pierce, J. R., 133
Pitches, 267, 268, 269
Pithoprakia, 15, 17-21
Plato, 1, 179, 202, 257: Politicos, 257,
295
Poincaré, H., 206
Poisson law. See Probability laws
Prigogine, I., 256
Probabilies, 256
Probabilistic wave form, 289; See
also Probability
Probability, definition, 207; Cauchy,
246, 251-52; distributions, 260; ex-
ponential, 12, 134, 142, 246;
Gaussian, 14-15, 33, 56, 60, 140,
246; Interlocked densities : ex-
ponential X Cauchy, 251-52; lo-
gistic X exponential, 254;
hyperbolic cosine X exponential,
253-54: laws, arc sine, 246; linear,
13, 136; logistic, 246, 250, 291,
293; Poisson, 12, 16, 23-25, 29-32,
54, 66, 133, 246-47; uniform, 246;
Wiener-Lévy, 247; theory, 9, 255
Ptolemaeos, Claudios, 185
Ptolemy, 186, 188
Pythagoras, 1, 207, 209; concept of
numbers, 201 ; Pythagoreans,
185, 201, 242; Pythagorism, 201,
204; tradition, 193
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Quantum mechanics, 256
Quantum physics, 257
Quintilianos, Aristides, 185-86

Raczinski, Jean-Michel, 329
Raga, 198

Ragas, Indian, 268

Rahn, John, 268 n.

Random walk, 289

Ravel, Marice, Bolero, 76
Real-time drawing, 329
Reichenbach, Hans, 257
Relativity, 257: theory of, 256
Repetition, 958, 259, 266, 267
Rhythms, 264, 265, 266

Rule See Law

Rules, 260

Russell, Bertrand, 195, 265

Scale, 268, 269: diatonic, 269, 276
See also Sieves

Scales of pitch, 964

Schaeffer, Pierre, 243

Scherchen, Hermann, 15, 24, 260

Schénberg, Arnold, 207-8, 243

Screens, 50-79; 108-9 ; construction,
66-68; .defmit.ion, bil: elementary
operauons, characteristics, 56-58;
linking screens, 69-78; summary,
56. See Markov chains

“Sequence” (in computing), 329

Serial music, 4, 8, 182, 186, 192,
208, 255; composition, 38;
m.eﬂ'zocl, 52; system, 204, 243;
Vienna school, 5, 8, 193

Serra, Marie-Héléne, 329fn

Shannon, 255

Siﬁ‘-_'fS, 265, 267, 268-76: elemental
displacement, 198; theory, 194-
200; transformations of, 275

Simonovic, C,, 134

Sound: clouds, 19; as phase of a
musical work, 29-93. glissandi, 10,
13-14, 32-36, 55, 140, 167-68, 213;
nature of, 43-50; sonic entities,

Index

definition as phase of a musical
work and description, 22-25;
sound-points, 12-13; transforma-
ton of sets of sounds, 16 ; white
noise, 289, See Screens and Micro-
sound strycture

Sound Masses, 255

Space, 257, 259, 262, 267: discon-
tinuity of, 963

Spatial Ubiquity", 256, 257

Spindel, P., 260

Statistical definition, 16

Steinhardt, Paul, 259

Stochastic, 10, 39, 43-44, 194, 295-
32.1; by Computer, 131-44, ma-
chme-(:rrlented interpretation of
Achorripsis, 134.43; computer-
pro- 8ramming and musical nota-
tions pf, 145-54; construction, 4;
deﬁr_utlon, 4; dynamics, 256;
music, 8, 12, 145-53, 182, 255:
musical composition, 5, 43; laws,
9, 12-16; process, 81, 244;
science, 8; synthesis, dynamic, 289-
93; See.also Probability laws: ex-
ponential, Gaussian, linear,
Poisson

Stochastic Mmusic, 255, 289 T, 295 ff,

Stochos, 4, 92 94

Stoicism, 205

Stralégie. Sees Game theory

Stravinsky, Igor, 5,192

8§7/10-2, 080.262, 134, 138-39, 144,
154

ST/48-1,2402 62, 144

Symmetries, 268, 289; (repetitions),
269: See allso Space

mml 80: 81 n.

Systems, dyn.amic, 293

Takahashi, Yuji, 175

Tempo, 276 See also Rhythm
Term, 69

Terretéktorh, 2 17, 236-37
Thales, 201

Timbre, 266, 968

Index

Time, 256, 257, 258, 259, 261, 262,
263, 265, 266: flux of, 262, 263,
264: irreversability of, 256

Tinctoris, Johannis, 183

Tonality, 258

Transformation, 69-75, 257; anthro-
pomorphic, 261: definition, 69;
stochastic transformation, 73, 75

Transition, 69, 73-74
Transitional probabilities, 44
Transposition, 276

Tryon, Edward, 259

Uniform function. See Probability
laws

UPIC (Unité Polygogique Informa-
tion), xii, 329-334
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Variations, 276

Variety, 61-63

Varese, 8, 243

Vilenkin, Alexander, 259

Voice editing (on the UPIC), 329

waveforms, 329-24
Wiener-Lévy process, 24, 247
Wittgenstein, 203

Yang, 256

Zarlino, 202




